Spaces:
Sleeping
Sleeping
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import torch | |
import numpy as np | |
import os | |
from . import Geometry | |
from .dmtet_utils import get_center_boundary_index | |
import torch.nn.functional as F | |
############################################################################### | |
# DMTet utility functions | |
############################################################################### | |
def create_mt_variable(device): | |
triangle_table = torch.tensor( | |
[ | |
[-1, -1, -1, -1, -1, -1], | |
[1, 0, 2, -1, -1, -1], | |
[4, 0, 3, -1, -1, -1], | |
[1, 4, 2, 1, 3, 4], | |
[3, 1, 5, -1, -1, -1], | |
[2, 3, 0, 2, 5, 3], | |
[1, 4, 0, 1, 5, 4], | |
[4, 2, 5, -1, -1, -1], | |
[4, 5, 2, -1, -1, -1], | |
[4, 1, 0, 4, 5, 1], | |
[3, 2, 0, 3, 5, 2], | |
[1, 3, 5, -1, -1, -1], | |
[4, 1, 2, 4, 3, 1], | |
[3, 0, 4, -1, -1, -1], | |
[2, 0, 1, -1, -1, -1], | |
[-1, -1, -1, -1, -1, -1] | |
], dtype=torch.long, device=device) | |
num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device) | |
base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device) | |
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device)) | |
return triangle_table, num_triangles_table, base_tet_edges, v_id | |
def sort_edges(edges_ex2): | |
with torch.no_grad(): | |
order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long() | |
order = order.unsqueeze(dim=1) | |
a = torch.gather(input=edges_ex2, index=order, dim=1) | |
b = torch.gather(input=edges_ex2, index=1 - order, dim=1) | |
return torch.stack([a, b], -1) | |
############################################################################### | |
# marching tetrahedrons (differentiable) | |
############################################################################### | |
def marching_tets(pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id): | |
with torch.no_grad(): | |
occ_n = sdf_n > 0 | |
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) | |
occ_sum = torch.sum(occ_fx4, -1) | |
valid_tets = (occ_sum > 0) & (occ_sum < 4) | |
occ_sum = occ_sum[valid_tets] | |
# find all vertices | |
all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2) | |
all_edges = sort_edges(all_edges) | |
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) | |
unique_edges = unique_edges.long() | |
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 | |
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1 | |
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device) | |
idx_map = mapping[idx_map] # map edges to verts | |
interp_v = unique_edges[mask_edges] # .long() | |
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) | |
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) | |
edges_to_interp_sdf[:, -1] *= -1 | |
denominator = edges_to_interp_sdf.sum(1, keepdim=True) | |
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator | |
verts = (edges_to_interp * edges_to_interp_sdf).sum(1) | |
idx_map = idx_map.reshape(-1, 6) | |
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) | |
num_triangles = num_triangles_table[tetindex] | |
# Generate triangle indices | |
faces = torch.cat( | |
( | |
torch.gather( | |
input=idx_map[num_triangles == 1], dim=1, | |
index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3), | |
torch.gather( | |
input=idx_map[num_triangles == 2], dim=1, | |
index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3), | |
), dim=0) | |
return verts, faces | |
def create_tetmesh_variables(device='cuda'): | |
tet_table = torch.tensor( | |
[[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
[0, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1], | |
[1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1], | |
[1, 0, 8, 7, 0, 5, 8, 7, 0, 5, 6, 8], | |
[2, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1], | |
[2, 0, 9, 7, 0, 4, 9, 7, 0, 4, 6, 9], | |
[2, 1, 9, 5, 1, 4, 9, 5, 1, 4, 8, 9], | |
[6, 0, 1, 2, 6, 1, 2, 8, 6, 8, 2, 9], | |
[3, 6, 8, 9, -1, -1, -1, -1, -1, -1, -1, -1], | |
[3, 0, 9, 8, 0, 4, 9, 8, 0, 4, 5, 9], | |
[3, 1, 9, 6, 1, 4, 9, 6, 1, 4, 7, 9], | |
[5, 0, 1, 3, 5, 1, 3, 7, 5, 7, 3, 9], | |
[3, 2, 8, 6, 2, 5, 8, 6, 2, 5, 7, 8], | |
[4, 0, 2, 3, 4, 2, 3, 7, 4, 7, 3, 8], | |
[4, 1, 2, 3, 4, 2, 3, 5, 4, 5, 3, 6], | |
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], dtype=torch.long, device=device) | |
num_tets_table = torch.tensor([0, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 0], dtype=torch.long, device=device) | |
return tet_table, num_tets_table | |
def marching_tets_tetmesh( | |
pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id, | |
return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None): | |
with torch.no_grad(): | |
occ_n = sdf_n > 0 | |
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) | |
occ_sum = torch.sum(occ_fx4, -1) | |
valid_tets = (occ_sum > 0) & (occ_sum < 4) | |
occ_sum = occ_sum[valid_tets] | |
# find all vertices | |
all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2) | |
all_edges = sort_edges(all_edges) | |
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) | |
unique_edges = unique_edges.long() | |
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 | |
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1 | |
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device) | |
idx_map = mapping[idx_map] # map edges to verts | |
interp_v = unique_edges[mask_edges] # .long() | |
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) | |
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) | |
edges_to_interp_sdf[:, -1] *= -1 | |
denominator = edges_to_interp_sdf.sum(1, keepdim=True) | |
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator | |
verts = (edges_to_interp * edges_to_interp_sdf).sum(1) | |
idx_map = idx_map.reshape(-1, 6) | |
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) | |
num_triangles = num_triangles_table[tetindex] | |
# Generate triangle indices | |
faces = torch.cat( | |
( | |
torch.gather( | |
input=idx_map[num_triangles == 1], dim=1, | |
index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3), | |
torch.gather( | |
input=idx_map[num_triangles == 2], dim=1, | |
index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3), | |
), dim=0) | |
if not return_tet_mesh: | |
return verts, faces | |
occupied_verts = ori_v[occ_n] | |
mapping = torch.ones((pos_nx3.shape[0]), dtype=torch.long, device="cuda") * -1 | |
mapping[occ_n] = torch.arange(occupied_verts.shape[0], device="cuda") | |
tet_fx4 = mapping[tet_fx4.reshape(-1)].reshape((-1, 4)) | |
idx_map = torch.cat([tet_fx4[valid_tets] + verts.shape[0], idx_map], -1) # t x 10 | |
tet_verts = torch.cat([verts, occupied_verts], 0) | |
num_tets = num_tets_table[tetindex] | |
tets = torch.cat( | |
( | |
torch.gather(input=idx_map[num_tets == 1], dim=1, index=tet_table[tetindex[num_tets == 1]][:, :4]).reshape( | |
-1, | |
4), | |
torch.gather(input=idx_map[num_tets == 3], dim=1, index=tet_table[tetindex[num_tets == 3]][:, :12]).reshape( | |
-1, | |
4), | |
), dim=0) | |
# add fully occupied tets | |
fully_occupied = occ_fx4.sum(-1) == 4 | |
tet_fully_occupied = tet_fx4[fully_occupied] + verts.shape[0] | |
tets = torch.cat([tets, tet_fully_occupied]) | |
return verts, faces, tet_verts, tets | |
############################################################################### | |
# Compact tet grid | |
############################################################################### | |
def compact_tets(pos_nx3, sdf_n, tet_fx4): | |
with torch.no_grad(): | |
# Find surface tets | |
occ_n = sdf_n > 0 | |
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) | |
occ_sum = torch.sum(occ_fx4, -1) | |
valid_tets = (occ_sum > 0) & (occ_sum < 4) # one value per tet, these are the surface tets | |
valid_vtx = tet_fx4[valid_tets].reshape(-1) | |
unique_vtx, idx_map = torch.unique(valid_vtx, dim=0, return_inverse=True) | |
new_pos = pos_nx3[unique_vtx] | |
new_sdf = sdf_n[unique_vtx] | |
new_tets = idx_map.reshape(-1, 4) | |
return new_pos, new_sdf, new_tets | |
############################################################################### | |
# Subdivide volume | |
############################################################################### | |
def batch_subdivide_volume(tet_pos_bxnx3, tet_bxfx4, grid_sdf): | |
device = tet_pos_bxnx3.device | |
# get new verts | |
tet_fx4 = tet_bxfx4[0] | |
edges = [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3] | |
all_edges = tet_fx4[:, edges].reshape(-1, 2) | |
all_edges = sort_edges(all_edges) | |
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) | |
idx_map = idx_map + tet_pos_bxnx3.shape[1] | |
all_values = torch.cat([tet_pos_bxnx3, grid_sdf], -1) | |
mid_points_pos = all_values[:, unique_edges.reshape(-1)].reshape( | |
all_values.shape[0], -1, 2, | |
all_values.shape[-1]).mean(2) | |
new_v = torch.cat([all_values, mid_points_pos], 1) | |
new_v, new_sdf = new_v[..., :3], new_v[..., 3] | |
# get new tets | |
idx_a, idx_b, idx_c, idx_d = tet_fx4[:, 0], tet_fx4[:, 1], tet_fx4[:, 2], tet_fx4[:, 3] | |
idx_ab = idx_map[0::6] | |
idx_ac = idx_map[1::6] | |
idx_ad = idx_map[2::6] | |
idx_bc = idx_map[3::6] | |
idx_bd = idx_map[4::6] | |
idx_cd = idx_map[5::6] | |
tet_1 = torch.stack([idx_a, idx_ab, idx_ac, idx_ad], dim=1) | |
tet_2 = torch.stack([idx_b, idx_bc, idx_ab, idx_bd], dim=1) | |
tet_3 = torch.stack([idx_c, idx_ac, idx_bc, idx_cd], dim=1) | |
tet_4 = torch.stack([idx_d, idx_ad, idx_cd, idx_bd], dim=1) | |
tet_5 = torch.stack([idx_ab, idx_ac, idx_ad, idx_bd], dim=1) | |
tet_6 = torch.stack([idx_ab, idx_ac, idx_bd, idx_bc], dim=1) | |
tet_7 = torch.stack([idx_cd, idx_ac, idx_bd, idx_ad], dim=1) | |
tet_8 = torch.stack([idx_cd, idx_ac, idx_bc, idx_bd], dim=1) | |
tet_np = torch.cat([tet_1, tet_2, tet_3, tet_4, tet_5, tet_6, tet_7, tet_8], dim=0) | |
tet_np = tet_np.reshape(1, -1, 4).expand(tet_pos_bxnx3.shape[0], -1, -1) | |
tet = tet_np.long().to(device) | |
return new_v, tet, new_sdf | |
############################################################################### | |
# Adjacency | |
############################################################################### | |
def tet_to_tet_adj_sparse(tet_tx4): | |
# include self connection!!!!!!!!!!!!!!!!!!! | |
with torch.no_grad(): | |
t = tet_tx4.shape[0] | |
device = tet_tx4.device | |
idx_array = torch.LongTensor( | |
[0, 1, 2, | |
1, 0, 3, | |
2, 3, 0, | |
3, 2, 1]).to(device).reshape(4, 3).unsqueeze(0).expand(t, -1, -1) # (t, 4, 3) | |
# get all faces | |
all_faces = torch.gather(input=tet_tx4.unsqueeze(1).expand(-1, 4, -1), index=idx_array, dim=-1).reshape( | |
-1, | |
3) # (tx4, 3) | |
all_faces_tet_idx = torch.arange(t, device=device).unsqueeze(-1).expand(-1, 4).reshape(-1) | |
# sort and group | |
all_faces_sorted, _ = torch.sort(all_faces, dim=1) | |
all_faces_unique, inverse_indices, counts = torch.unique( | |
all_faces_sorted, dim=0, return_counts=True, | |
return_inverse=True) | |
tet_face_fx3 = all_faces_unique[counts == 2] | |
counts = counts[inverse_indices] # tx4 | |
valid = (counts == 2) | |
group = inverse_indices[valid] | |
# print (inverse_indices.shape, group.shape, all_faces_tet_idx.shape) | |
_, indices = torch.sort(group) | |
all_faces_tet_idx_grouped = all_faces_tet_idx[valid][indices] | |
tet_face_tetidx_fx2 = torch.stack([all_faces_tet_idx_grouped[::2], all_faces_tet_idx_grouped[1::2]], dim=-1) | |
tet_adj_idx = torch.cat([tet_face_tetidx_fx2, torch.flip(tet_face_tetidx_fx2, [1])]) | |
adj_self = torch.arange(t, device=tet_tx4.device) | |
adj_self = torch.stack([adj_self, adj_self], -1) | |
tet_adj_idx = torch.cat([tet_adj_idx, adj_self]) | |
tet_adj_idx = torch.unique(tet_adj_idx, dim=0) | |
values = torch.ones( | |
tet_adj_idx.shape[0], device=tet_tx4.device).float() | |
adj_sparse = torch.sparse.FloatTensor( | |
tet_adj_idx.t(), values, torch.Size([t, t])) | |
# normalization | |
neighbor_num = 1.0 / torch.sparse.sum( | |
adj_sparse, dim=1).to_dense() | |
values = torch.index_select(neighbor_num, 0, tet_adj_idx[:, 0]) | |
adj_sparse = torch.sparse.FloatTensor( | |
tet_adj_idx.t(), values, torch.Size([t, t])) | |
return adj_sparse | |
############################################################################### | |
# Compact grid | |
############################################################################### | |
def get_tet_bxfx4x3(bxnxz, bxfx4): | |
n_batch, z = bxnxz.shape[0], bxnxz.shape[2] | |
gather_input = bxnxz.unsqueeze(2).expand( | |
n_batch, bxnxz.shape[1], 4, z) | |
gather_index = bxfx4.unsqueeze(-1).expand( | |
n_batch, bxfx4.shape[1], 4, z).long() | |
tet_bxfx4xz = torch.gather( | |
input=gather_input, dim=1, index=gather_index) | |
return tet_bxfx4xz | |
def shrink_grid(tet_pos_bxnx3, tet_bxfx4, grid_sdf): | |
with torch.no_grad(): | |
assert tet_pos_bxnx3.shape[0] == 1 | |
occ = grid_sdf[0] > 0 | |
occ_sum = get_tet_bxfx4x3(occ.unsqueeze(0).unsqueeze(-1), tet_bxfx4).reshape(-1, 4).sum(-1) | |
mask = (occ_sum > 0) & (occ_sum < 4) | |
# build connectivity graph | |
adj_matrix = tet_to_tet_adj_sparse(tet_bxfx4[0]) | |
mask = mask.float().unsqueeze(-1) | |
# Include a one ring of neighbors | |
for i in range(1): | |
mask = torch.sparse.mm(adj_matrix, mask) | |
mask = mask.squeeze(-1) > 0 | |
mapping = torch.zeros((tet_pos_bxnx3.shape[1]), device=tet_pos_bxnx3.device, dtype=torch.long) | |
new_tet_bxfx4 = tet_bxfx4[:, mask].long() | |
selected_verts_idx = torch.unique(new_tet_bxfx4) | |
new_tet_pos_bxnx3 = tet_pos_bxnx3[:, selected_verts_idx] | |
mapping[selected_verts_idx] = torch.arange(selected_verts_idx.shape[0], device=tet_pos_bxnx3.device) | |
new_tet_bxfx4 = mapping[new_tet_bxfx4.reshape(-1)].reshape(new_tet_bxfx4.shape) | |
new_grid_sdf = grid_sdf[:, selected_verts_idx] | |
return new_tet_pos_bxnx3, new_tet_bxfx4, new_grid_sdf | |
############################################################################### | |
# Regularizer | |
############################################################################### | |
def sdf_reg_loss(sdf, all_edges): | |
sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1, 2) | |
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) | |
sdf_f1x6x2 = sdf_f1x6x2[mask] | |
sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits( | |
sdf_f1x6x2[..., 0], | |
(sdf_f1x6x2[..., 1] > 0).float()) + \ | |
torch.nn.functional.binary_cross_entropy_with_logits( | |
sdf_f1x6x2[..., 1], | |
(sdf_f1x6x2[..., 0] > 0).float()) | |
return sdf_diff | |
def sdf_reg_loss_batch(sdf, all_edges): | |
sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2) | |
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) | |
sdf_f1x6x2 = sdf_f1x6x2[mask] | |
sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \ | |
torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()) | |
return sdf_diff | |
############################################################################### | |
# Geometry interface | |
############################################################################### | |
class DMTetGeometry(Geometry): | |
def __init__( | |
self, grid_res=64, scale=2.0, device='cuda', renderer=None, | |
render_type='neural_render', args=None): | |
super(DMTetGeometry, self).__init__() | |
self.grid_res = grid_res | |
self.device = device | |
self.args = args | |
tets = np.load('data/tets/%d_compress.npz' % (grid_res)) | |
self.verts = torch.from_numpy(tets['vertices']).float().to(self.device) | |
# Make sure the tet is zero-centered and length is equal to 1 | |
length = self.verts.max(dim=0)[0] - self.verts.min(dim=0)[0] | |
length = length.max() | |
mid = (self.verts.max(dim=0)[0] + self.verts.min(dim=0)[0]) / 2.0 | |
self.verts = (self.verts - mid.unsqueeze(dim=0)) / length | |
if isinstance(scale, list): | |
self.verts[:, 0] = self.verts[:, 0] * scale[0] | |
self.verts[:, 1] = self.verts[:, 1] * scale[1] | |
self.verts[:, 2] = self.verts[:, 2] * scale[1] | |
else: | |
self.verts = self.verts * scale | |
self.indices = torch.from_numpy(tets['tets']).long().to(self.device) | |
self.triangle_table, self.num_triangles_table, self.base_tet_edges, self.v_id = create_mt_variable(self.device) | |
self.tet_table, self.num_tets_table = create_tetmesh_variables(self.device) | |
# Parameters for regularization computation | |
edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=self.device) | |
all_edges = self.indices[:, edges].reshape(-1, 2) | |
all_edges_sorted = torch.sort(all_edges, dim=1)[0] | |
self.all_edges = torch.unique(all_edges_sorted, dim=0) | |
# Parameters used for fix boundary sdf | |
self.center_indices, self.boundary_indices = get_center_boundary_index(self.verts) | |
self.renderer = renderer | |
self.render_type = render_type | |
def getAABB(self): | |
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values | |
def get_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None): | |
if indices is None: | |
indices = self.indices | |
verts, faces = marching_tets( | |
v_deformed_nx3, sdf_n, indices, self.triangle_table, | |
self.num_triangles_table, self.base_tet_edges, self.v_id) | |
faces = torch.cat( | |
[faces[:, 0:1], | |
faces[:, 2:3], | |
faces[:, 1:2], ], dim=-1) | |
return verts, faces | |
def get_tet_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None): | |
if indices is None: | |
indices = self.indices | |
verts, faces, tet_verts, tets = marching_tets_tetmesh( | |
v_deformed_nx3, sdf_n, indices, self.triangle_table, | |
self.num_triangles_table, self.base_tet_edges, self.v_id, return_tet_mesh=True, | |
num_tets_table=self.num_tets_table, tet_table=self.tet_table, ori_v=v_deformed_nx3) | |
faces = torch.cat( | |
[faces[:, 0:1], | |
faces[:, 2:3], | |
faces[:, 1:2], ], dim=-1) | |
return verts, faces, tet_verts, tets | |
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False): | |
return_value = dict() | |
if self.render_type == 'neural_render': | |
tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh( | |
mesh_v_nx3.unsqueeze(dim=0), | |
mesh_f_fx3.int(), | |
camera_mv_bx4x4, | |
mesh_v_nx3.unsqueeze(dim=0), | |
resolution=resolution, | |
device=self.device, | |
hierarchical_mask=hierarchical_mask | |
) | |
return_value['tex_pos'] = tex_pos | |
return_value['mask'] = mask | |
return_value['hard_mask'] = hard_mask | |
return_value['rast'] = rast | |
return_value['v_pos_clip'] = v_pos_clip | |
return_value['mask_pyramid'] = mask_pyramid | |
return_value['depth'] = depth | |
else: | |
raise NotImplementedError | |
return return_value | |
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256): | |
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1 | |
v_list = [] | |
f_list = [] | |
n_batch = v_deformed_bxnx3.shape[0] | |
all_render_output = [] | |
for i_batch in range(n_batch): | |
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch]) | |
v_list.append(verts_nx3) | |
f_list.append(faces_fx3) | |
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution) | |
all_render_output.append(render_output) | |
# Concatenate all render output | |
return_keys = all_render_output[0].keys() | |
return_value = dict() | |
for k in return_keys: | |
value = [v[k] for v in all_render_output] | |
return_value[k] = value | |
# We can do concatenation outside of the render | |
return return_value | |