|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...loaders import PeftAdapterMixin |
|
from ...loaders.single_file_model import FromOriginalModelMixin |
|
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers |
|
from ...utils.torch_utils import maybe_allow_in_graph |
|
from ..attention import FeedForward |
|
from ..attention_processor import MochiAttention, MochiAttnProcessor2_0 |
|
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed |
|
from ..modeling_outputs import Transformer2DModelOutput |
|
from ..modeling_utils import ModelMixin |
|
from ..normalization import AdaLayerNormContinuous, RMSNorm |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MochiModulatedRMSNorm(nn.Module): |
|
def __init__(self, eps: float): |
|
super().__init__() |
|
|
|
self.eps = eps |
|
self.norm = RMSNorm(0, eps, False) |
|
|
|
def forward(self, hidden_states, scale=None): |
|
hidden_states_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
if scale is not None: |
|
hidden_states = hidden_states * scale |
|
|
|
hidden_states = hidden_states.to(hidden_states_dtype) |
|
|
|
return hidden_states |
|
|
|
|
|
class MochiLayerNormContinuous(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
conditioning_embedding_dim: int, |
|
eps=1e-5, |
|
bias=True, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.silu = nn.SiLU() |
|
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) |
|
self.norm = MochiModulatedRMSNorm(eps=eps) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
conditioning_embedding: torch.Tensor, |
|
) -> torch.Tensor: |
|
input_dtype = x.dtype |
|
|
|
|
|
scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) |
|
x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32))) |
|
|
|
return x.to(input_dtype) |
|
|
|
|
|
class MochiRMSNormZero(nn.Module): |
|
r""" |
|
Adaptive RMS Norm used in Mochi. |
|
|
|
Parameters: |
|
embedding_dim (`int`): The size of each embedding vector. |
|
""" |
|
|
|
def __init__( |
|
self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False |
|
) -> None: |
|
super().__init__() |
|
|
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, hidden_dim) |
|
self.norm = RMSNorm(0, eps, False) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, emb: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
hidden_states_dtype = hidden_states.dtype |
|
|
|
emb = self.linear(self.silu(emb)) |
|
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) |
|
hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32)) |
|
hidden_states = hidden_states.to(hidden_states_dtype) |
|
|
|
return hidden_states, gate_msa, scale_mlp, gate_mlp |
|
|
|
|
|
@maybe_allow_in_graph |
|
class MochiTransformerBlock(nn.Module): |
|
r""" |
|
Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). |
|
|
|
Args: |
|
dim (`int`): |
|
The number of channels in the input and output. |
|
num_attention_heads (`int`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): |
|
The number of channels in each head. |
|
qk_norm (`str`, defaults to `"rms_norm"`): |
|
The normalization layer to use. |
|
activation_fn (`str`, defaults to `"swiglu"`): |
|
Activation function to use in feed-forward. |
|
context_pre_only (`bool`, defaults to `False`): |
|
Whether or not to process context-related conditions with additional layers. |
|
eps (`float`, defaults to `1e-6`): |
|
Epsilon value for normalization layers. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
pooled_projection_dim: int, |
|
qk_norm: str = "rms_norm", |
|
activation_fn: str = "swiglu", |
|
context_pre_only: bool = False, |
|
eps: float = 1e-6, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.context_pre_only = context_pre_only |
|
self.ff_inner_dim = (4 * dim * 2) // 3 |
|
self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3 |
|
|
|
self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False) |
|
|
|
if not context_pre_only: |
|
self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False) |
|
else: |
|
self.norm1_context = MochiLayerNormContinuous( |
|
embedding_dim=pooled_projection_dim, |
|
conditioning_embedding_dim=dim, |
|
eps=eps, |
|
) |
|
|
|
self.attn1 = MochiAttention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
bias=False, |
|
added_kv_proj_dim=pooled_projection_dim, |
|
added_proj_bias=False, |
|
out_dim=dim, |
|
out_context_dim=pooled_projection_dim, |
|
context_pre_only=context_pre_only, |
|
processor=MochiAttnProcessor2_0(), |
|
eps=1e-5, |
|
) |
|
|
|
|
|
self.norm2 = MochiModulatedRMSNorm(eps=eps) |
|
self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None |
|
|
|
self.norm3 = MochiModulatedRMSNorm(eps) |
|
self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None |
|
|
|
self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False) |
|
self.ff_context = None |
|
if not context_pre_only: |
|
self.ff_context = FeedForward( |
|
pooled_projection_dim, |
|
inner_dim=self.ff_context_inner_dim, |
|
activation_fn=activation_fn, |
|
bias=False, |
|
) |
|
|
|
self.norm4 = MochiModulatedRMSNorm(eps=eps) |
|
self.norm4_context = MochiModulatedRMSNorm(eps=eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
temb: torch.Tensor, |
|
encoder_attention_mask: torch.Tensor, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) |
|
|
|
if not self.context_pre_only: |
|
norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context( |
|
encoder_hidden_states, temb |
|
) |
|
else: |
|
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) |
|
|
|
attn_hidden_states, context_attn_hidden_states = self.attn1( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
attention_mask=encoder_attention_mask, |
|
) |
|
|
|
hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1)) |
|
norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32))) |
|
ff_output = self.ff(norm_hidden_states) |
|
hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1)) |
|
|
|
if not self.context_pre_only: |
|
encoder_hidden_states = encoder_hidden_states + self.norm2_context( |
|
context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1) |
|
) |
|
norm_encoder_hidden_states = self.norm3_context( |
|
encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32)) |
|
) |
|
context_ff_output = self.ff_context(norm_encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states + self.norm4_context( |
|
context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1) |
|
) |
|
|
|
return hidden_states, encoder_hidden_states |
|
|
|
|
|
class MochiRoPE(nn.Module): |
|
r""" |
|
RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). |
|
|
|
Args: |
|
base_height (`int`, defaults to `192`): |
|
Base height used to compute interpolation scale for rotary positional embeddings. |
|
base_width (`int`, defaults to `192`): |
|
Base width used to compute interpolation scale for rotary positional embeddings. |
|
""" |
|
|
|
def __init__(self, base_height: int = 192, base_width: int = 192) -> None: |
|
super().__init__() |
|
|
|
self.target_area = base_height * base_width |
|
|
|
def _centers(self, start, stop, num, device, dtype) -> torch.Tensor: |
|
edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype) |
|
return (edges[:-1] + edges[1:]) / 2 |
|
|
|
def _get_positions( |
|
self, |
|
num_frames: int, |
|
height: int, |
|
width: int, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> torch.Tensor: |
|
scale = (self.target_area / (height * width)) ** 0.5 |
|
|
|
t = torch.arange(num_frames, device=device, dtype=dtype) |
|
h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype) |
|
w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype) |
|
|
|
grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij") |
|
|
|
positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3) |
|
return positions |
|
|
|
def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor: |
|
with torch.autocast(freqs.device.type, torch.float32): |
|
|
|
freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32)) |
|
|
|
freqs_cos = torch.cos(freqs) |
|
freqs_sin = torch.sin(freqs) |
|
return freqs_cos, freqs_sin |
|
|
|
def forward( |
|
self, |
|
pos_frequencies: torch.Tensor, |
|
num_frames: int, |
|
height: int, |
|
width: int, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
pos = self._get_positions(num_frames, height, width, device, dtype) |
|
rope_cos, rope_sin = self._create_rope(pos_frequencies, pos) |
|
return rope_cos, rope_sin |
|
|
|
|
|
@maybe_allow_in_graph |
|
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): |
|
r""" |
|
A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview). |
|
|
|
Args: |
|
patch_size (`int`, defaults to `2`): |
|
The size of the patches to use in the patch embedding layer. |
|
num_attention_heads (`int`, defaults to `24`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, defaults to `128`): |
|
The number of channels in each head. |
|
num_layers (`int`, defaults to `48`): |
|
The number of layers of Transformer blocks to use. |
|
in_channels (`int`, defaults to `12`): |
|
The number of channels in the input. |
|
out_channels (`int`, *optional*, defaults to `None`): |
|
The number of channels in the output. |
|
qk_norm (`str`, defaults to `"rms_norm"`): |
|
The normalization layer to use. |
|
text_embed_dim (`int`, defaults to `4096`): |
|
Input dimension of text embeddings from the text encoder. |
|
time_embed_dim (`int`, defaults to `256`): |
|
Output dimension of timestep embeddings. |
|
activation_fn (`str`, defaults to `"swiglu"`): |
|
Activation function to use in feed-forward. |
|
max_sequence_length (`int`, defaults to `256`): |
|
The maximum sequence length of text embeddings supported. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["MochiTransformerBlock"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
patch_size: int = 2, |
|
num_attention_heads: int = 24, |
|
attention_head_dim: int = 128, |
|
num_layers: int = 48, |
|
pooled_projection_dim: int = 1536, |
|
in_channels: int = 12, |
|
out_channels: Optional[int] = None, |
|
qk_norm: str = "rms_norm", |
|
text_embed_dim: int = 4096, |
|
time_embed_dim: int = 256, |
|
activation_fn: str = "swiglu", |
|
max_sequence_length: int = 256, |
|
) -> None: |
|
super().__init__() |
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
out_channels = out_channels or in_channels |
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
pos_embed_type=None, |
|
) |
|
|
|
self.time_embed = MochiCombinedTimestepCaptionEmbedding( |
|
embedding_dim=inner_dim, |
|
pooled_projection_dim=pooled_projection_dim, |
|
text_embed_dim=text_embed_dim, |
|
time_embed_dim=time_embed_dim, |
|
num_attention_heads=8, |
|
) |
|
|
|
self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0)) |
|
self.rope = MochiRoPE() |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
MochiTransformerBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
pooled_projection_dim=pooled_projection_dim, |
|
qk_norm=qk_norm, |
|
activation_fn=activation_fn, |
|
context_pre_only=i == num_layers - 1, |
|
) |
|
for i in range(num_layers) |
|
] |
|
) |
|
|
|
self.norm_out = AdaLayerNormContinuous( |
|
inner_dim, |
|
inner_dim, |
|
elementwise_affine=False, |
|
eps=1e-6, |
|
norm_type="layer_norm", |
|
) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
timestep: torch.LongTensor, |
|
encoder_attention_mask: torch.Tensor, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
) -> torch.Tensor: |
|
if attention_kwargs is not None: |
|
attention_kwargs = attention_kwargs.copy() |
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
batch_size, num_channels, num_frames, height, width = hidden_states.shape |
|
p = self.config.patch_size |
|
|
|
post_patch_height = height // p |
|
post_patch_width = width // p |
|
|
|
temb, encoder_hidden_states = self.time_embed( |
|
timestep, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
hidden_dtype=hidden_states.dtype, |
|
) |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
hidden_states = self.patch_embed(hidden_states) |
|
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) |
|
|
|
image_rotary_emb = self.rope( |
|
self.pos_frequencies, |
|
num_frames, |
|
post_patch_height, |
|
post_patch_width, |
|
device=hidden_states.device, |
|
dtype=torch.float32, |
|
) |
|
|
|
for i, block in enumerate(self.transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
encoder_attention_mask, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states, encoder_hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
encoder_attention_mask=encoder_attention_mask, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
hidden_states = self.norm_out(hidden_states, temb) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1) |
|
hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5) |
|
output = hidden_states.reshape(batch_size, -1, num_frames, height, width) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
return Transformer2DModelOutput(sample=output) |
|
|