|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...utils import is_torch_version, logging |
|
from ...utils.torch_utils import maybe_allow_in_graph |
|
from ..attention import FeedForward |
|
from ..attention_processor import AllegroAttnProcessor2_0, Attention |
|
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection |
|
from ..modeling_outputs import Transformer2DModelOutput |
|
from ..modeling_utils import ModelMixin |
|
from ..normalization import AdaLayerNormSingle |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@maybe_allow_in_graph |
|
class AllegroTransformerBlock(nn.Module): |
|
r""" |
|
Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model. |
|
|
|
Args: |
|
dim (`int`): |
|
The number of channels in the input and output. |
|
num_attention_heads (`int`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): |
|
The number of channels in each head. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability to use. |
|
cross_attention_dim (`int`, defaults to `2304`): |
|
The dimension of the cross attention features. |
|
activation_fn (`str`, defaults to `"gelu-approximate"`): |
|
Activation function to be used in feed-forward. |
|
attention_bias (`bool`, defaults to `False`): |
|
Whether or not to use bias in attention projection layers. |
|
only_cross_attention (`bool`, defaults to `False`): |
|
norm_elementwise_affine (`bool`, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_eps (`float`, defaults to `1e-5`): |
|
Epsilon value for normalization layers. |
|
final_dropout (`bool` defaults to `False`): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
attention_bias: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=None, |
|
processor=AllegroAttnProcessor2_0(), |
|
) |
|
|
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
processor=AllegroAttnProcessor2_0(), |
|
) |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
) |
|
|
|
|
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
image_rotary_emb=None, |
|
) -> torch.Tensor: |
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
norm_hidden_states = norm_hidden_states.squeeze(1) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=attention_mask, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = hidden_states |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
image_rotary_emb=None, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
|
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
|
|
class AllegroTransformer3DModel(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
""" |
|
A 3D Transformer model for video-like data. |
|
|
|
Args: |
|
patch_size (`int`, defaults to `2`): |
|
The size of spatial patches to use in the patch embedding layer. |
|
patch_size_t (`int`, defaults to `1`): |
|
The size of temporal patches to use in the patch embedding layer. |
|
num_attention_heads (`int`, defaults to `24`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, defaults to `96`): |
|
The number of channels in each head. |
|
in_channels (`int`, defaults to `4`): |
|
The number of channels in the input. |
|
out_channels (`int`, *optional*, defaults to `4`): |
|
The number of channels in the output. |
|
num_layers (`int`, defaults to `32`): |
|
The number of layers of Transformer blocks to use. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability to use. |
|
cross_attention_dim (`int`, defaults to `2304`): |
|
The dimension of the cross attention features. |
|
attention_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in the attention projection layers. |
|
sample_height (`int`, defaults to `90`): |
|
The height of the input latents. |
|
sample_width (`int`, defaults to `160`): |
|
The width of the input latents. |
|
sample_frames (`int`, defaults to `22`): |
|
The number of frames in the input latents. |
|
activation_fn (`str`, defaults to `"gelu-approximate"`): |
|
Activation function to use in feed-forward. |
|
norm_elementwise_affine (`bool`, defaults to `False`): |
|
Whether or not to use elementwise affine in normalization layers. |
|
norm_eps (`float`, defaults to `1e-6`): |
|
The epsilon value to use in normalization layers. |
|
caption_channels (`int`, defaults to `4096`): |
|
Number of channels to use for projecting the caption embeddings. |
|
interpolation_scale_h (`float`, defaults to `2.0`): |
|
Scaling factor to apply in 3D positional embeddings across height dimension. |
|
interpolation_scale_w (`float`, defaults to `2.0`): |
|
Scaling factor to apply in 3D positional embeddings across width dimension. |
|
interpolation_scale_t (`float`, defaults to `2.2`): |
|
Scaling factor to apply in 3D positional embeddings across time dimension. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
patch_size: int = 2, |
|
patch_size_t: int = 1, |
|
num_attention_heads: int = 24, |
|
attention_head_dim: int = 96, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
num_layers: int = 32, |
|
dropout: float = 0.0, |
|
cross_attention_dim: int = 2304, |
|
attention_bias: bool = True, |
|
sample_height: int = 90, |
|
sample_width: int = 160, |
|
sample_frames: int = 22, |
|
activation_fn: str = "gelu-approximate", |
|
norm_elementwise_affine: bool = False, |
|
norm_eps: float = 1e-6, |
|
caption_channels: int = 4096, |
|
interpolation_scale_h: float = 2.0, |
|
interpolation_scale_w: float = 2.0, |
|
interpolation_scale_t: float = 2.2, |
|
): |
|
super().__init__() |
|
|
|
self.inner_dim = num_attention_heads * attention_head_dim |
|
|
|
interpolation_scale_t = ( |
|
interpolation_scale_t |
|
if interpolation_scale_t is not None |
|
else ((sample_frames - 1) // 16 + 1) |
|
if sample_frames % 2 == 1 |
|
else sample_frames // 16 |
|
) |
|
interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30 |
|
interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40 |
|
|
|
|
|
self.pos_embed = PatchEmbed( |
|
height=sample_height, |
|
width=sample_width, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=self.inner_dim, |
|
pos_embed_type=None, |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
AllegroTransformerBlock( |
|
self.inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) |
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels) |
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False) |
|
|
|
|
|
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
timestep: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
return_dict: bool = True, |
|
): |
|
batch_size, num_channels, num_frames, height, width = hidden_states.shape |
|
p_t = self.config.patch_size_t |
|
p = self.config.patch_size |
|
|
|
post_patch_num_frames = num_frames // p_t |
|
post_patch_height = height // p |
|
post_patch_width = width // p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 4: |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(hidden_states.dtype) |
|
attention_mask = attention_mask[:, :num_frames] |
|
|
|
if attention_mask.numel() > 0: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p)) |
|
attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1) |
|
|
|
attention_mask = ( |
|
(1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None |
|
) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
hidden_states = self.pos_embed(hidden_states) |
|
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) |
|
|
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1]) |
|
|
|
|
|
for i, block in enumerate(self.transformer_blocks): |
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
timestep, |
|
attention_mask, |
|
encoder_attention_mask, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=timestep, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
|
|
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
hidden_states = hidden_states.reshape( |
|
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1 |
|
) |
|
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) |
|
output = hidden_states.reshape(batch_size, -1, num_frames, height, width) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|