|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...models.embeddings import PixArtAlphaTextProjection, get_1d_sincos_pos_embed_from_grid |
|
from ..attention import BasicTransformerBlock |
|
from ..embeddings import PatchEmbed |
|
from ..modeling_outputs import Transformer2DModelOutput |
|
from ..modeling_utils import ModelMixin |
|
from ..normalization import AdaLayerNormSingle |
|
|
|
|
|
class LatteTransformer3DModel(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
""" |
|
A 3D Transformer model for video-like data, paper: https://arxiv.org/abs/2401.03048, offical code: |
|
https://github.com/Vchitect/Latte |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input. |
|
out_channels (`int`, *optional*): |
|
The number of channels in the output. |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlocks` attention should contain a bias parameter. |
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). |
|
This is fixed during training since it is used to learn a number of position embeddings. |
|
patch_size (`int`, *optional*): |
|
The size of the patches to use in the patch embedding layer. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): |
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is |
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are |
|
added to the hidden states. During inference, you can denoise for up to but not more steps than |
|
`num_embeds_ada_norm`. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether or not to use elementwise affine in normalization layers. |
|
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers. |
|
caption_channels (`int`, *optional*): |
|
The number of channels in the caption embeddings. |
|
video_length (`int`, *optional*): |
|
The number of frames in the video-like data. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: int = 64, |
|
patch_size: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
norm_type: str = "layer_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
caption_channels: int = None, |
|
video_length: int = 16, |
|
): |
|
super().__init__() |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
self.height = sample_size |
|
self.width = sample_size |
|
|
|
interpolation_scale = self.config.sample_size // 64 |
|
interpolation_scale = max(interpolation_scale, 1) |
|
self.pos_embed = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.temporal_transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=None, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) |
|
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) |
|
|
|
|
|
temp_pos_embed = get_1d_sincos_pos_embed_from_grid( |
|
inner_dim, torch.arange(0, video_length).unsqueeze(1), output_type="pt" |
|
) |
|
self.register_buffer("temp_pos_embed", temp_pos_embed.float().unsqueeze(0), persistent=False) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: Optional[torch.LongTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
enable_temporal_attentions: bool = True, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`LatteTransformer3DModel`] forward method. |
|
|
|
Args: |
|
hidden_states shape `(batch size, channel, num_frame, height, width)`: |
|
Input `hidden_states`. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batcheight, sequence_length)` True = keep, False = discard. |
|
* Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
enable_temporal_attentions: |
|
(`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
batch_size, channels, num_frame, height, width = hidden_states.shape |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width) |
|
|
|
|
|
height, width = ( |
|
hidden_states.shape[-2] // self.config.patch_size, |
|
hidden_states.shape[-1] // self.config.patch_size, |
|
) |
|
num_patches = height * width |
|
|
|
hidden_states = self.pos_embed(hidden_states) |
|
|
|
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
|
|
|
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view( |
|
-1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1] |
|
) |
|
|
|
|
|
timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1]) |
|
timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1]) |
|
|
|
|
|
for i, (spatial_block, temp_block) in enumerate( |
|
zip(self.transformer_blocks, self.temporal_transformer_blocks) |
|
): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
spatial_block, |
|
hidden_states, |
|
None, |
|
encoder_hidden_states_spatial, |
|
encoder_attention_mask, |
|
timestep_spatial, |
|
None, |
|
None, |
|
use_reentrant=False, |
|
) |
|
else: |
|
hidden_states = spatial_block( |
|
hidden_states, |
|
None, |
|
encoder_hidden_states_spatial, |
|
encoder_attention_mask, |
|
timestep_spatial, |
|
None, |
|
None, |
|
) |
|
|
|
if enable_temporal_attentions: |
|
|
|
hidden_states = hidden_states.reshape( |
|
batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] |
|
).permute(0, 2, 1, 3) |
|
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) |
|
|
|
if i == 0 and num_frame > 1: |
|
hidden_states = hidden_states + self.temp_pos_embed |
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
temp_block, |
|
hidden_states, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
None, |
|
None, |
|
use_reentrant=False, |
|
) |
|
else: |
|
hidden_states = temp_block( |
|
hidden_states, |
|
None, |
|
None, |
|
None, |
|
timestep_temp, |
|
None, |
|
None, |
|
) |
|
|
|
|
|
hidden_states = hidden_states.reshape( |
|
batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] |
|
).permute(0, 2, 1, 3) |
|
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) |
|
|
|
embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1]) |
|
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
if self.adaln_single is None: |
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size) |
|
) |
|
output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute( |
|
0, 2, 1, 3, 4 |
|
) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|