|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...loaders import PeftAdapterMixin |
|
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers |
|
from ...utils.torch_utils import maybe_allow_in_graph |
|
from ..attention import Attention, FeedForward |
|
from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 |
|
from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps |
|
from ..modeling_outputs import Transformer2DModelOutput |
|
from ..modeling_utils import ModelMixin |
|
from ..normalization import AdaLayerNorm, CogVideoXLayerNormZero |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@maybe_allow_in_graph |
|
class CogVideoXBlock(nn.Module): |
|
r""" |
|
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. |
|
|
|
Parameters: |
|
dim (`int`): |
|
The number of channels in the input and output. |
|
num_attention_heads (`int`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): |
|
The number of channels in each head. |
|
time_embed_dim (`int`): |
|
The number of channels in timestep embedding. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability to use. |
|
activation_fn (`str`, defaults to `"gelu-approximate"`): |
|
Activation function to be used in feed-forward. |
|
attention_bias (`bool`, defaults to `False`): |
|
Whether or not to use bias in attention projection layers. |
|
qk_norm (`bool`, defaults to `True`): |
|
Whether or not to use normalization after query and key projections in Attention. |
|
norm_elementwise_affine (`bool`, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_eps (`float`, defaults to `1e-5`): |
|
Epsilon value for normalization layers. |
|
final_dropout (`bool` defaults to `False`): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
ff_inner_dim (`int`, *optional*, defaults to `None`): |
|
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. |
|
ff_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in Feed-forward layer. |
|
attention_out_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in Attention output projection layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
time_embed_dim: int, |
|
dropout: float = 0.0, |
|
activation_fn: str = "gelu-approximate", |
|
attention_bias: bool = False, |
|
qk_norm: bool = True, |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = True, |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = True, |
|
attention_out_bias: bool = True, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
qk_norm="layer_norm" if qk_norm else None, |
|
eps=1e-6, |
|
bias=attention_bias, |
|
out_bias=attention_out_bias, |
|
processor=CogVideoXAttnProcessor2_0(), |
|
) |
|
|
|
|
|
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
inner_dim=ff_inner_dim, |
|
bias=ff_bias, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
temb: torch.Tensor, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
text_seq_length = encoder_hidden_states.size(1) |
|
|
|
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( |
|
hidden_states, encoder_hidden_states, temb |
|
) |
|
|
|
|
|
attn_hidden_states, attn_encoder_hidden_states = self.attn1( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
hidden_states = hidden_states + gate_msa * attn_hidden_states |
|
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states |
|
|
|
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( |
|
hidden_states, encoder_hidden_states, temb |
|
) |
|
|
|
|
|
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] |
|
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] |
|
|
|
return hidden_states, encoder_hidden_states |
|
|
|
|
|
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): |
|
""" |
|
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). |
|
|
|
Parameters: |
|
num_attention_heads (`int`, defaults to `30`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, defaults to `64`): |
|
The number of channels in each head. |
|
in_channels (`int`, defaults to `16`): |
|
The number of channels in the input. |
|
out_channels (`int`, *optional*, defaults to `16`): |
|
The number of channels in the output. |
|
flip_sin_to_cos (`bool`, defaults to `True`): |
|
Whether to flip the sin to cos in the time embedding. |
|
time_embed_dim (`int`, defaults to `512`): |
|
Output dimension of timestep embeddings. |
|
ofs_embed_dim (`int`, defaults to `512`): |
|
Output dimension of "ofs" embeddings used in CogVideoX-5b-I2B in version 1.5 |
|
text_embed_dim (`int`, defaults to `4096`): |
|
Input dimension of text embeddings from the text encoder. |
|
num_layers (`int`, defaults to `30`): |
|
The number of layers of Transformer blocks to use. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability to use. |
|
attention_bias (`bool`, defaults to `True`): |
|
Whether to use bias in the attention projection layers. |
|
sample_width (`int`, defaults to `90`): |
|
The width of the input latents. |
|
sample_height (`int`, defaults to `60`): |
|
The height of the input latents. |
|
sample_frames (`int`, defaults to `49`): |
|
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 |
|
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, |
|
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with |
|
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). |
|
patch_size (`int`, defaults to `2`): |
|
The size of the patches to use in the patch embedding layer. |
|
temporal_compression_ratio (`int`, defaults to `4`): |
|
The compression ratio across the temporal dimension. See documentation for `sample_frames`. |
|
max_text_seq_length (`int`, defaults to `226`): |
|
The maximum sequence length of the input text embeddings. |
|
activation_fn (`str`, defaults to `"gelu-approximate"`): |
|
Activation function to use in feed-forward. |
|
timestep_activation_fn (`str`, defaults to `"silu"`): |
|
Activation function to use when generating the timestep embeddings. |
|
norm_elementwise_affine (`bool`, defaults to `True`): |
|
Whether to use elementwise affine in normalization layers. |
|
norm_eps (`float`, defaults to `1e-5`): |
|
The epsilon value to use in normalization layers. |
|
spatial_interpolation_scale (`float`, defaults to `1.875`): |
|
Scaling factor to apply in 3D positional embeddings across spatial dimensions. |
|
temporal_interpolation_scale (`float`, defaults to `1.0`): |
|
Scaling factor to apply in 3D positional embeddings across temporal dimensions. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 30, |
|
attention_head_dim: int = 64, |
|
in_channels: int = 16, |
|
out_channels: Optional[int] = 16, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
time_embed_dim: int = 512, |
|
ofs_embed_dim: Optional[int] = None, |
|
text_embed_dim: int = 4096, |
|
num_layers: int = 30, |
|
dropout: float = 0.0, |
|
attention_bias: bool = True, |
|
sample_width: int = 90, |
|
sample_height: int = 60, |
|
sample_frames: int = 49, |
|
patch_size: int = 2, |
|
patch_size_t: Optional[int] = None, |
|
temporal_compression_ratio: int = 4, |
|
max_text_seq_length: int = 226, |
|
activation_fn: str = "gelu-approximate", |
|
timestep_activation_fn: str = "silu", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
spatial_interpolation_scale: float = 1.875, |
|
temporal_interpolation_scale: float = 1.0, |
|
use_rotary_positional_embeddings: bool = False, |
|
use_learned_positional_embeddings: bool = False, |
|
patch_bias: bool = True, |
|
): |
|
super().__init__() |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
if not use_rotary_positional_embeddings and use_learned_positional_embeddings: |
|
raise ValueError( |
|
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional " |
|
"embeddings. If you're using a custom model and/or believe this should be supported, please open an " |
|
"issue at https://github.com/huggingface/diffusers/issues." |
|
) |
|
|
|
|
|
self.patch_embed = CogVideoXPatchEmbed( |
|
patch_size=patch_size, |
|
patch_size_t=patch_size_t, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
text_embed_dim=text_embed_dim, |
|
bias=patch_bias, |
|
sample_width=sample_width, |
|
sample_height=sample_height, |
|
sample_frames=sample_frames, |
|
temporal_compression_ratio=temporal_compression_ratio, |
|
max_text_seq_length=max_text_seq_length, |
|
spatial_interpolation_scale=spatial_interpolation_scale, |
|
temporal_interpolation_scale=temporal_interpolation_scale, |
|
use_positional_embeddings=not use_rotary_positional_embeddings, |
|
use_learned_positional_embeddings=use_learned_positional_embeddings, |
|
) |
|
self.embedding_dropout = nn.Dropout(dropout) |
|
|
|
|
|
|
|
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) |
|
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) |
|
|
|
self.ofs_proj = None |
|
self.ofs_embedding = None |
|
if ofs_embed_dim: |
|
self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift) |
|
self.ofs_embedding = TimestepEmbedding( |
|
ofs_embed_dim, ofs_embed_dim, timestep_activation_fn |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
CogVideoXBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) |
|
|
|
|
|
self.norm_out = AdaLayerNorm( |
|
embedding_dim=time_embed_dim, |
|
output_dim=2 * inner_dim, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
chunk_dim=1, |
|
) |
|
|
|
if patch_size_t is None: |
|
|
|
output_dim = patch_size * patch_size * out_channels |
|
else: |
|
|
|
output_dim = patch_size * patch_size * patch_size_t * out_channels |
|
|
|
self.proj_out = nn.Linear(inner_dim, output_dim) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) |
|
are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
timestep: Union[int, float, torch.LongTensor], |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
ofs: Optional[Union[int, float, torch.LongTensor]] = None, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
): |
|
if attention_kwargs is not None: |
|
attention_kwargs = attention_kwargs.copy() |
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
batch_size, num_frames, channels, height, width = hidden_states.shape |
|
|
|
|
|
timesteps = timestep |
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=hidden_states.dtype) |
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
if self.ofs_embedding is not None: |
|
ofs_emb = self.ofs_proj(ofs) |
|
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype) |
|
ofs_emb = self.ofs_embedding(ofs_emb) |
|
emb = emb + ofs_emb |
|
|
|
|
|
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) |
|
hidden_states = self.embedding_dropout(hidden_states) |
|
|
|
text_seq_length = encoder_hidden_states.shape[1] |
|
encoder_hidden_states = hidden_states[:, :text_seq_length] |
|
hidden_states = hidden_states[:, text_seq_length:] |
|
|
|
|
|
for i, block in enumerate(self.transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
emb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states, encoder_hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=emb, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
if not self.config.use_rotary_positional_embeddings: |
|
|
|
hidden_states = self.norm_final(hidden_states) |
|
else: |
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
hidden_states = self.norm_final(hidden_states) |
|
hidden_states = hidden_states[:, text_seq_length:] |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb=emb) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
p = self.config.patch_size |
|
p_t = self.config.patch_size_t |
|
|
|
if p_t is None: |
|
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) |
|
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) |
|
else: |
|
output = hidden_states.reshape( |
|
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p |
|
) |
|
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
return Transformer2DModelOutput(sample=output) |
|
|