Spaces:
Running
Running
Upload hmr.py
Browse files- src/spin/hmr.py +196 -0
src/spin/hmr.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torchvision.models.resnet as resnet
|
7 |
+
|
8 |
+
|
9 |
+
def rot6d_to_rotmat(x):
|
10 |
+
"""Convert 6D rotation representation to 3x3 rotation matrix.
|
11 |
+
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
|
12 |
+
Input:
|
13 |
+
(B,6) Batch of 6-D rotation representations
|
14 |
+
Output:
|
15 |
+
(B,3,3) Batch of corresponding rotation matrices
|
16 |
+
"""
|
17 |
+
|
18 |
+
x = x.view(-1, 3, 2)
|
19 |
+
a1 = x[:, :, 0]
|
20 |
+
a2 = x[:, :, 1]
|
21 |
+
b1 = nn.functional.normalize(a1)
|
22 |
+
b2 = nn.functional.normalize(
|
23 |
+
a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1
|
24 |
+
)
|
25 |
+
|
26 |
+
b3 = torch.cross(b1, b2)
|
27 |
+
|
28 |
+
return torch.stack((b1, b2, b3), dim=-1)
|
29 |
+
|
30 |
+
|
31 |
+
class Bottleneck(nn.Module):
|
32 |
+
"""Redefinition of Bottleneck residual block
|
33 |
+
Adapted from the official PyTorch implementation
|
34 |
+
"""
|
35 |
+
|
36 |
+
expansion = 4
|
37 |
+
|
38 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
39 |
+
super(Bottleneck, self).__init__()
|
40 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
41 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
42 |
+
self.conv2 = nn.Conv2d(
|
43 |
+
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
|
44 |
+
)
|
45 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
46 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
47 |
+
self.bn3 = nn.BatchNorm2d(planes * 4)
|
48 |
+
self.relu = nn.ReLU(inplace=True)
|
49 |
+
self.downsample = downsample
|
50 |
+
self.stride = stride
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
residual = x
|
54 |
+
|
55 |
+
out = self.conv1(x)
|
56 |
+
out = self.bn1(out)
|
57 |
+
out = self.relu(out)
|
58 |
+
|
59 |
+
out = self.conv2(out)
|
60 |
+
out = self.bn2(out)
|
61 |
+
out = self.relu(out)
|
62 |
+
|
63 |
+
out = self.conv3(out)
|
64 |
+
out = self.bn3(out)
|
65 |
+
|
66 |
+
if self.downsample is not None:
|
67 |
+
residual = self.downsample(x)
|
68 |
+
|
69 |
+
out += residual
|
70 |
+
out = self.relu(out)
|
71 |
+
|
72 |
+
return out
|
73 |
+
|
74 |
+
|
75 |
+
class HMR(nn.Module):
|
76 |
+
"""SMPL Iterative Regressor with ResNet50 backbone"""
|
77 |
+
|
78 |
+
def __init__(self, block, layers, smpl_mean_params):
|
79 |
+
self.inplanes = 64
|
80 |
+
super(HMR, self).__init__()
|
81 |
+
self.n_shape = 10
|
82 |
+
self.n_cam = 3
|
83 |
+
self.n_joints = 24
|
84 |
+
npose = self.n_joints * 6
|
85 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
86 |
+
self.bn1 = nn.BatchNorm2d(64)
|
87 |
+
self.relu = nn.ReLU(inplace=True)
|
88 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
89 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
90 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
91 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
92 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
93 |
+
self.avgpool = nn.AvgPool2d(7, stride=1)
|
94 |
+
self.fc1 = nn.Linear(512 * block.expansion + npose + self.n_shape + self.n_cam, 1024)
|
95 |
+
self.drop1 = nn.Dropout()
|
96 |
+
self.fc2 = nn.Linear(1024, 1024)
|
97 |
+
self.drop2 = nn.Dropout()
|
98 |
+
self.decpose = nn.Linear(1024, npose)
|
99 |
+
self.decshape = nn.Linear(1024, self.n_shape)
|
100 |
+
self.deccam = nn.Linear(1024, self.n_cam)
|
101 |
+
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
|
102 |
+
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
|
103 |
+
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
|
104 |
+
|
105 |
+
for m in self.modules():
|
106 |
+
if isinstance(m, nn.Conv2d):
|
107 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
108 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
109 |
+
elif isinstance(m, nn.BatchNorm2d):
|
110 |
+
m.weight.data.fill_(1)
|
111 |
+
m.bias.data.zero_()
|
112 |
+
|
113 |
+
mean_params = np.load(smpl_mean_params)
|
114 |
+
init_pose = torch.from_numpy(mean_params["pose"][:]).unsqueeze(0)
|
115 |
+
init_shape = torch.from_numpy(
|
116 |
+
mean_params["shape"][:].astype("float32")
|
117 |
+
).unsqueeze(0)
|
118 |
+
init_cam = torch.from_numpy(mean_params["cam"]).unsqueeze(0)
|
119 |
+
self.register_buffer("init_pose", init_pose)
|
120 |
+
self.register_buffer("init_shape", init_shape)
|
121 |
+
self.register_buffer("init_cam", init_cam)
|
122 |
+
|
123 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
124 |
+
downsample = None
|
125 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
126 |
+
downsample = nn.Sequential(
|
127 |
+
nn.Conv2d(
|
128 |
+
self.inplanes,
|
129 |
+
planes * block.expansion,
|
130 |
+
kernel_size=1,
|
131 |
+
stride=stride,
|
132 |
+
bias=False,
|
133 |
+
),
|
134 |
+
nn.BatchNorm2d(planes * block.expansion),
|
135 |
+
)
|
136 |
+
|
137 |
+
layers = []
|
138 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
139 |
+
self.inplanes = planes * block.expansion
|
140 |
+
for _ in range(1, blocks):
|
141 |
+
layers.append(block(self.inplanes, planes))
|
142 |
+
|
143 |
+
return nn.Sequential(*layers)
|
144 |
+
|
145 |
+
def forward(self, x, init_pose=None, init_shape=None, init_cam=None, n_iter=3):
|
146 |
+
|
147 |
+
batch_size = x.shape[0]
|
148 |
+
|
149 |
+
if init_pose is None:
|
150 |
+
init_pose = self.init_pose.expand(batch_size, -1)
|
151 |
+
if init_shape is None:
|
152 |
+
init_shape = self.init_shape.expand(batch_size, -1)
|
153 |
+
if init_cam is None:
|
154 |
+
init_cam = self.init_cam.expand(batch_size, -1)
|
155 |
+
|
156 |
+
x = self.conv1(x)
|
157 |
+
x = self.bn1(x)
|
158 |
+
x = self.relu(x)
|
159 |
+
x = self.maxpool(x)
|
160 |
+
|
161 |
+
x1 = self.layer1(x)
|
162 |
+
x2 = self.layer2(x1)
|
163 |
+
x3 = self.layer3(x2)
|
164 |
+
x4 = self.layer4(x3)
|
165 |
+
|
166 |
+
xf = self.avgpool(x4)
|
167 |
+
xf = xf.view(xf.size(0), -1)
|
168 |
+
|
169 |
+
pred_pose = init_pose
|
170 |
+
pred_shape = init_shape
|
171 |
+
pred_cam = init_cam
|
172 |
+
for _ in range(n_iter):
|
173 |
+
xc = torch.cat([xf, pred_pose, pred_shape, pred_cam], 1)
|
174 |
+
xc = self.fc1(xc)
|
175 |
+
xc = self.drop1(xc)
|
176 |
+
xc = self.fc2(xc)
|
177 |
+
xc = self.drop2(xc)
|
178 |
+
pred_pose = self.decpose(xc) + pred_pose
|
179 |
+
pred_shape = self.decshape(xc) + pred_shape
|
180 |
+
pred_cam = self.deccam(xc) + pred_cam
|
181 |
+
|
182 |
+
pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, self.n_joints, 3, 3)
|
183 |
+
|
184 |
+
return pred_rotmat, pred_shape, pred_cam
|
185 |
+
|
186 |
+
|
187 |
+
def hmr(smpl_mean_params, pretrained=True, **kwargs):
|
188 |
+
"""Constructs an HMR model with ResNet50 backbone.
|
189 |
+
Args:
|
190 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
191 |
+
"""
|
192 |
+
model = HMR(Bottleneck, [3, 4, 6, 3], smpl_mean_params, **kwargs)
|
193 |
+
if pretrained:
|
194 |
+
resnet_imagenet = resnet.resnet50(pretrained=True)
|
195 |
+
model.load_state_dict(resnet_imagenet.state_dict(), strict=False)
|
196 |
+
return model
|