|
|
|
|
|
from __future__ import annotations |
|
|
|
import pathlib |
|
|
|
import gradio as gr |
|
import numpy as np |
|
|
|
from model import Model |
|
|
|
DESCRIPTION = "# [Self-Distilled StyleGAN](https://github.com/self-distilled-stylegan/self-distilled-internet-photos)" |
|
|
|
|
|
def get_sample_image_url(name: str) -> str: |
|
sample_image_dir = "https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples" |
|
return f"{sample_image_dir}/{name}.jpg" |
|
|
|
|
|
def get_sample_image_markdown(name: str) -> str: |
|
url = get_sample_image_url(name) |
|
size = name.split("_")[1] |
|
truncation_type = "_".join(name.split("_")[2:]) |
|
return f""" |
|
- size: {size}x{size} |
|
- seed: 0-99 |
|
- truncation: 0.7 |
|
- truncation type: {truncation_type} |
|
![sample images]({url})""" |
|
|
|
|
|
def get_cluster_center_image_url(model_name: str) -> str: |
|
cluster_center_image_dir = ( |
|
"https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/cluster_center_images" |
|
) |
|
return f"{cluster_center_image_dir}/{model_name}.jpg" |
|
|
|
|
|
def get_cluster_center_image_markdown(model_name: str) -> str: |
|
url = get_cluster_center_image_url(model_name) |
|
return f"![cluster center images]({url})" |
|
|
|
|
|
model = Model() |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("App"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
model_name = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0]) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0) |
|
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7) |
|
truncation_type = gr.Dropdown( |
|
label="Truncation Type", choices=model.TRUNCATION_TYPES, value=model.TRUNCATION_TYPES[0] |
|
) |
|
run_button = gr.Button("Run") |
|
with gr.Column(): |
|
result = gr.Image(label="Result", elem_id="result") |
|
|
|
with gr.TabItem("Sample Images"): |
|
with gr.Row(): |
|
paths = sorted(pathlib.Path("samples").glob("*")) |
|
names = [path.stem for path in paths] |
|
model_name2 = gr.Dropdown(label="Type", choices=names, value="dogs_1024_multimodal_lpips") |
|
with gr.Row(): |
|
text = get_sample_image_markdown(model_name2.value) |
|
sample_images = gr.Markdown(text) |
|
|
|
with gr.TabItem("Cluster Center Images"): |
|
with gr.Row(): |
|
model_name3 = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0]) |
|
with gr.Row(): |
|
text = get_cluster_center_image_markdown(model_name3.value) |
|
cluster_center_images = gr.Markdown(value=text) |
|
|
|
model_name.change( |
|
fn=model.set_model, |
|
inputs=model_name, |
|
) |
|
run_button.click( |
|
fn=model.set_model_and_generate_image, |
|
inputs=[ |
|
model_name, |
|
seed, |
|
psi, |
|
truncation_type, |
|
], |
|
outputs=result, |
|
) |
|
model_name2.change( |
|
fn=get_sample_image_markdown, |
|
inputs=model_name2, |
|
outputs=sample_images, |
|
) |
|
model_name3.change( |
|
fn=get_cluster_center_image_markdown, |
|
inputs=model_name3, |
|
outputs=cluster_center_images, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=10).launch() |
|
|