hysts's picture
hysts HF staff
Update
4872e62
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
import numpy as np
from model import Model
DESCRIPTION = "# [Self-Distilled StyleGAN](https://github.com/self-distilled-stylegan/self-distilled-internet-photos)"
def get_sample_image_url(name: str) -> str:
sample_image_dir = "https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples"
return f"{sample_image_dir}/{name}.jpg"
def get_sample_image_markdown(name: str) -> str:
url = get_sample_image_url(name)
size = name.split("_")[1]
truncation_type = "_".join(name.split("_")[2:])
return f"""
- size: {size}x{size}
- seed: 0-99
- truncation: 0.7
- truncation type: {truncation_type}
![sample images]({url})"""
def get_cluster_center_image_url(model_name: str) -> str:
cluster_center_image_dir = (
"https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/cluster_center_images"
)
return f"{cluster_center_image_dir}/{model_name}.jpg"
def get_cluster_center_image_markdown(model_name: str) -> str:
url = get_cluster_center_image_url(model_name)
return f"![cluster center images]({url})"
model = Model()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem("App"):
with gr.Row():
with gr.Column():
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0])
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0)
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
truncation_type = gr.Dropdown(
label="Truncation Type", choices=model.TRUNCATION_TYPES, value=model.TRUNCATION_TYPES[0]
)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result", elem_id="result")
with gr.TabItem("Sample Images"):
with gr.Row():
paths = sorted(pathlib.Path("samples").glob("*"))
names = [path.stem for path in paths]
model_name2 = gr.Dropdown(label="Type", choices=names, value="dogs_1024_multimodal_lpips")
with gr.Row():
text = get_sample_image_markdown(model_name2.value)
sample_images = gr.Markdown(text)
with gr.TabItem("Cluster Center Images"):
with gr.Row():
model_name3 = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0])
with gr.Row():
text = get_cluster_center_image_markdown(model_name3.value)
cluster_center_images = gr.Markdown(value=text)
model_name.change(
fn=model.set_model,
inputs=model_name,
)
run_button.click(
fn=model.set_model_and_generate_image,
inputs=[
model_name,
seed,
psi,
truncation_type,
],
outputs=result,
)
model_name2.change(
fn=get_sample_image_markdown,
inputs=model_name2,
outputs=sample_images,
)
model_name3.change(
fn=get_cluster_center_image_markdown,
inputs=model_name3,
outputs=cluster_center_images,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()