Spaces:
Runtime error
Runtime error
import time | |
import cv2 | |
import numpy as np | |
from .config import config as cfg | |
from .face_detector import FaceDetector | |
from .face_landmark import FaceLandmark | |
from .LK.lk import GroupTrack | |
class FaceAna(): | |
''' | |
by default the top3 facea sorted by area will be calculated for time reason | |
''' | |
def __init__(self, model_dir): | |
self.face_detector = FaceDetector(model_dir) | |
self.face_landmark = FaceLandmark(model_dir) | |
self.trace = GroupTrack() | |
self.track_box = None | |
self.previous_image = None | |
self.previous_box = None | |
self.diff_thres = 5 | |
self.top_k = cfg.DETECT.topk | |
self.iou_thres = cfg.TRACE.iou_thres | |
self.alpha = cfg.TRACE.smooth_box | |
def run(self, image): | |
boxes = self.face_detector(image) | |
if boxes.shape[0] > self.top_k: | |
boxes = self.sort(boxes) | |
boxes_return = np.array(boxes) | |
landmarks, states = self.face_landmark(image, boxes) | |
if 1: | |
track = [] | |
for i in range(landmarks.shape[0]): | |
track.append([ | |
np.min(landmarks[i][:, 0]), | |
np.min(landmarks[i][:, 1]), | |
np.max(landmarks[i][:, 0]), | |
np.max(landmarks[i][:, 1]) | |
]) | |
tmp_box = np.array(track) | |
self.track_box = self.judge_boxs(boxes_return, tmp_box) | |
self.track_box, landmarks = self.sort_res(self.track_box, landmarks) | |
return self.track_box, landmarks, states | |
def sort_res(self, bboxes, points): | |
area = [] | |
for bbox in bboxes: | |
bbox_width = bbox[2] - bbox[0] | |
bbox_height = bbox[3] - bbox[1] | |
area.append(bbox_height * bbox_width) | |
area = np.array(area) | |
picked = area.argsort()[::-1] | |
sorted_bboxes = [bboxes[x] for x in picked] | |
sorted_points = [points[x] for x in picked] | |
return np.array(sorted_bboxes), np.array(sorted_points) | |
def diff_frames(self, previous_frame, image): | |
if previous_frame is None: | |
return True | |
else: | |
_diff = cv2.absdiff(previous_frame, image) | |
diff = np.sum( | |
_diff) / previous_frame.shape[0] / previous_frame.shape[1] / 3. | |
return diff > self.diff_thres | |
def sort(self, bboxes): | |
if self.top_k > 100: | |
return bboxes | |
area = [] | |
for bbox in bboxes: | |
bbox_width = bbox[2] - bbox[0] | |
bbox_height = bbox[3] - bbox[1] | |
area.append(bbox_height * bbox_width) | |
area = np.array(area) | |
picked = area.argsort()[-self.top_k:][::-1] | |
sorted_bboxes = [bboxes[x] for x in picked] | |
return np.array(sorted_bboxes) | |
def judge_boxs(self, previuous_bboxs, now_bboxs): | |
def iou(rec1, rec2): | |
# computing area of each rectangles | |
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) | |
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) | |
# computing the sum_area | |
sum_area = S_rec1 + S_rec2 | |
# find the each edge of intersect rectangle | |
x1 = max(rec1[0], rec2[0]) | |
y1 = max(rec1[1], rec2[1]) | |
x2 = min(rec1[2], rec2[2]) | |
y2 = min(rec1[3], rec2[3]) | |
# judge if there is an intersect | |
intersect = max(0, x2 - x1) * max(0, y2 - y1) | |
return intersect / (sum_area - intersect) | |
if previuous_bboxs is None: | |
return now_bboxs | |
result = [] | |
for i in range(now_bboxs.shape[0]): | |
contain = False | |
for j in range(previuous_bboxs.shape[0]): | |
if iou(now_bboxs[i], previuous_bboxs[j]) > self.iou_thres: | |
result.append( | |
self.smooth(now_bboxs[i], previuous_bboxs[j])) | |
contain = True | |
break | |
if not contain: | |
result.append(now_bboxs[i]) | |
return np.array(result) | |
def smooth(self, now_box, previous_box): | |
return self.do_moving_average(now_box[:4], previous_box[:4]) | |
def do_moving_average(self, p_now, p_previous): | |
p = self.alpha * p_now + (1 - self.alpha) * p_previous | |
return p | |
def reset(self): | |
''' | |
reset the previous info used foe tracking, | |
:return: | |
''' | |
self.track_box = None | |
self.previous_image = None | |
self.previous_box = None | |