Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
output = "personne habillée"
|
17 |
else:
|
18 |
-
|
19 |
-
return
|
20 |
|
21 |
|
22 |
-
image = gr.inputs.
|
23 |
-
label = gr.outputs.Label(num_top_classes=3)
|
24 |
|
25 |
gr.Interface(
|
26 |
-
fn=classify_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
new_model = tf.keras.models.load_model('best_model_mammography.h5')
|
7 |
+
|
8 |
+
def classify_image(file_name):
|
9 |
+
img1 = cv2.imread(file_name.name.replace("\\",'/'),0)
|
10 |
+
img = cv2.resize(img1, (224,224))
|
11 |
+
img = img.reshape(img.shape[0],img.shape[1],1)
|
12 |
+
pred = new_model.predict(np.array([img]))
|
13 |
+
pred = np.round(pred,1)
|
14 |
+
if pred == 0:
|
15 |
+
pred = "Vôtre cancer est Begnine"
|
|
|
16 |
else:
|
17 |
+
pred= "Vôtre cancer est maline"
|
18 |
+
return pred
|
19 |
|
20 |
|
21 |
+
image = gr.inputs.File( file_count="single",type="file", label="Fichier à Traiter (sous fichier .pgm)")
|
22 |
+
# label = gr.outputs.Label(num_top_classes=3)
|
23 |
|
24 |
gr.Interface(
|
25 |
+
fn=classify_image,
|
26 |
+
inputs=image,
|
27 |
+
outputs="text",
|
28 |
+
interpretation="default",
|
29 |
+
live=True,
|
30 |
+
theme="dark-peach",
|
31 |
+
title="API BREASTNET de Test de diagnostique du Cancer de Sein",
|
32 |
+
description="Cette API est utilisé pour dire si le Cancer de sein est Maline ou Pas"
|
33 |
).launch()
|