event_detection_app / event_detection_model.py
SHSH0819's picture
Upload event_detection_model.py
f8e416f
raw
history blame
1.05 kB
import torch
from transformers import AutoModel
from transformers import AutoModelForMaskedLM
class DistillBERTClass(torch.nn.Module):
def __init__(self, checkpoint_model):
#the super class is not important here!
super(DistillBERTClass, self).__init__()
#check the rmodel used here !
self.pre_trained_model = AutoModelForMaskedLM.from_pretrained(checkpoint_model,output_hidden_states=True)
self.linear = torch.nn.Linear(768, 768)
self.relu = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(0.3)
self.classifier = torch.nn.Linear(768, 12)
def forward(self, input_ids, attention_mask):
pre_trained_output = self.pre_trained_model(input_ids=input_ids, attention_mask=attention_mask)
hidden_state = pre_trained_output.hidden_states[-1]
hidden_state = hidden_state[:, 0, :]
output = self.linear(hidden_state)
output = self.relu(output)
output = self.dropout(output)
output = self.classifier(output)
return output