|
from citekit.cite_modules.LLM import Module,LLM |
|
from citekit.cite_modules.Retrieve import DPRRetriever |
|
from citekit.evaluator.evaluator import _run_nli_autoais, Evaluator |
|
from citekit.prompt.prompt import Prompt |
|
from citekit.utils.utils import one_paragraph, make_as |
|
from sentence_transformers import SentenceTransformer |
|
import re |
|
import random |
|
|
|
|
|
class Retriever(Module): |
|
model_type = 'retriever' |
|
def __init__(self, documents = None ,retrieve_by = 'index', prompt_maker = None, pipeline = None, post_processing = lambda input, output: {'RetrievedDocs':output}, self_prompt = {},topk = 3,add_id = True, merge = False, tsv_path = 'None', emb_path = 'None', retrieve_from_data = True, parallel = False) -> None: |
|
super().__init__(prompt_maker,pipeline,self_prompt,merge=merge, parallel=parallel) |
|
self.retrieve_by = retrieve_by |
|
self.use_head_prompt = False |
|
self.dataset_documents = None |
|
self.documents = None |
|
self.default_doc_key = 'docs' |
|
self.retrieve_from_data = retrieve_from_data |
|
if not documents: |
|
self.documents = self.pipeline.doc_cache |
|
else: |
|
self.dataset_documents = documents |
|
self.post_processing = post_processing |
|
self.if_add_output_to_head = False |
|
self.topk = topk |
|
self.add_id = add_id |
|
if retrieve_by =='bm25': |
|
self.bm25_module_loaded = False |
|
from rank_bm25 import BM25Okapi |
|
import nltk |
|
from nltk.tokenize import word_tokenize |
|
self.word_tokenize = word_tokenize |
|
self.BM25Okapi = BM25Okapi |
|
self.bm25_module_loaded = True |
|
elif retrieve_by == 'dpr': |
|
self.dpr_retriever = DPRRetriever(DPR_WIKI_TSV=tsv_path, |
|
GTR_EMB=emb_path) |
|
|
|
def generate(self,head_prompt: dict = {}, dynamic_prompt: dict = {}): |
|
index = self.pipeline.data_index |
|
if self.dataset_documents: |
|
if isinstance(self.dataset_documents[0], list): |
|
|
|
self.documents = self.dataset_documents[index] |
|
else: |
|
self.documents = self.dataset_documents |
|
else: |
|
if not self.retrieve_from_data: |
|
self.documents = self.pipeline.doc_cache.show_docs() |
|
else: |
|
def _stringtfy(doc): |
|
if isinstance(doc, str): |
|
return doc |
|
return f"({doc['title']}) {doc['text']}" |
|
self.documents = list(map(_stringtfy, self.pipeline.current_data[self.default_doc_key])) |
|
|
|
if self.use_head_prompt: |
|
prompt = self.prompt_maker(head_prompt,self.self_prompt,dynamic_prompt) |
|
else: |
|
prompt = self.prompt_maker(self.self_prompt,dynamic_prompt) |
|
|
|
retrieved_docs = [] |
|
if self.retrieve_by == 'index': |
|
|
|
indice = [int(r[1:]) - 1 for r in re.findall(r"\[\d+",prompt)] |
|
for index in indice: |
|
retrieved_docs.append(self.documents[index]) |
|
if len(retrieved_docs) > self.topk: |
|
retrieved_docs = retrieved_docs[:self.topk] |
|
elif self.retrieve_by =='bm25': |
|
|
|
tokenized_docs = [self.word_tokenize(doc.lower()) for doc in self.documents] |
|
bm25 = self.BM25Okapi(tokenized_docs) |
|
tokenized_query = self.word_tokenize(prompt.lower()) |
|
doc_scores = bm25.get_scores(tokenized_query) |
|
if self.topk > len(doc_scores): |
|
self.topk = len(doc_scores) - 1 |
|
top_k_idx = sorted(range(len(doc_scores)), key=lambda i: doc_scores[i], reverse=True)[:self.topk] |
|
retrieved_docs = [self.documents[index] for index in top_k_idx] |
|
retrieved_docs_new = [] |
|
for re_doc in retrieved_docs: |
|
self.pipeline.doc_cache.add_doc(re_doc,self.add_id) |
|
retrieved_docs_new.append(self.pipeline.doc_cache.get_last()) |
|
retrieved_docs = retrieved_docs_new |
|
|
|
|
|
|
|
elif self.retrieve_by =='gtr': |
|
docs_dict = self.dpr_retriever.retrieve(prompt,topk=self.topk) |
|
retrieved_docs = [f"({d['title']}) {d['text']}" for d in docs_dict] |
|
retrieved_docs_new = [] |
|
for re_doc in retrieved_docs: |
|
self.pipeline.doc_cache.add_doc(re_doc,self.add_id) |
|
retrieved_docs_new.append(self.pipeline.doc_cache.get_last()) |
|
retrieved_docs = retrieved_docs_new |
|
|
|
retrieved_docs_prompt = '\n'.join(retrieved_docs) |
|
destination = self.send() |
|
if self.multi_process: |
|
self.last_message.append(retrieved_docs_prompt) |
|
else: |
|
self.last_message = retrieved_docs_prompt |
|
|
|
|
|
if self.if_add_output_to_head: |
|
self.pipeline.head.update({self.head_key:retrieved_docs_prompt}) |
|
if destination in self.conditions: |
|
try: |
|
return self.conditions[destination]['post_processing'](prompt,retrieved_docs_prompt) |
|
except: |
|
return self.conditions[destination]['post_processing'](retrieved_docs_prompt) |
|
|
|
else: |
|
return retrieved_docs_prompt |
|
raise NotImplementedError |
|
|
|
|
|
class EvalModule(Module, Evaluator): |
|
model_type = 'evaluator' |
|
def __init__(self, prompt_maker = None, pipeline=None, self_prompt={},criteria = None, iterative = False, max_turn =6 ,parallel = False) -> None: |
|
Module.__init__(self,prompt_maker, pipeline, self_prompt,iterative=iterative,max_turn=max_turn, parallel=parallel) |
|
Evaluator.__init__(self,criteria,pipeline) |
|
|
|
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}): |
|
result = {} |
|
p_data = {**head_prompt, **self.self_prompt,**dynamic_prompt} |
|
for criteria, get_data in self.get_data.items(): |
|
data_dict = {} |
|
for k, v in get_data.items(): |
|
if v == 'doc_cache': |
|
data_dict[k] = self.pipeline.doc_cache.show_docs() |
|
else: |
|
if v in p_data.keys(): |
|
data_dict[k] = p_data[v] |
|
else: |
|
data_dict[k] = self.pipeline.current_data[v] |
|
eval_func = Evaluator.eval_criteria[criteria] |
|
data = [data_dict] |
|
result[criteria] = eval_func(data) |
|
|
|
if self.multi_process: |
|
self.last_message.append(result) |
|
else: |
|
self.last_message = result |
|
destination = self.send() |
|
if destination in self.conditions: |
|
return self.conditions[destination]['post_processing'](result) |
|
else: |
|
return result |
|
|
|
|
|
class CitationSimplyfier(Module): |
|
''' |
|
Simplify the citation of the 'answer' in prompt. |
|
Argument can be changed to fit into different name of key in prompts |
|
By Defaut, the simplifier simplifies the 'answer' and output the sring with citation simplified. |
|
''' |
|
model_type = 'simplifier' |
|
def __init__(self, prompt_maker = None, pipeline=None, self_prompt={}, criteria = None, key = 'answer', test = False, allow_empty = True) -> None: |
|
Module.__init__(self,prompt_maker, pipeline, self_prompt) |
|
if not test: |
|
self.entail = _run_nli_autoais |
|
else: |
|
self.entail = lambda p,c : random.randint(0,1) |
|
self.docs = ['0'] * 100 |
|
self.key = key |
|
self.allow_empty = allow_empty |
|
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}) -> str: |
|
docs = self.pipeline.doc_cache |
|
prompt = {**head_prompt, **dynamic_prompt} |
|
answer = prompt[self.key] |
|
|
|
refs = re.findall(r'\[\d+\]', answer) |
|
last_ref_index = None |
|
for match in re.finditer(r'\[\d+\]', answer): |
|
last_ref_index = match.end() |
|
|
|
if not refs: |
|
return answer |
|
|
|
refs_str = ''.join(refs) |
|
|
|
def simplify(sentence, refs, docs): |
|
ref_numbers = [int(ref.strip('[]')) for ref in refs] |
|
|
|
docs_combined = ''.join(docs[ref - 1] for ref in ref_numbers if ref - 1 < len(docs)) |
|
|
|
if not self.entail(docs_combined, sentence): |
|
if self.allow_empty: |
|
return '' |
|
return ''.join(refs) |
|
|
|
if len(ref_numbers) == 1: |
|
return ''.join(f'[{num}]' for num in ref_numbers) |
|
|
|
def remove_and_test(ref_numbers): |
|
for i, ref in enumerate(ref_numbers): |
|
new_ref_numbers = ref_numbers[:i] + ref_numbers[i+1:] |
|
new_docs_combined = ''.join(docs[r - 1] for r in new_ref_numbers if r - 1 < len(docs)) |
|
if self.entail(new_docs_combined, sentence): |
|
if len(new_ref_numbers) == 1: |
|
return new_ref_numbers |
|
return remove_and_test(new_ref_numbers) |
|
return ref_numbers |
|
|
|
simplified_ref_numbers = remove_and_test(ref_numbers) |
|
|
|
simplified_refs = ''.join(f'[{num}]' for num in simplified_ref_numbers) |
|
return simplified_refs |
|
|
|
simplified_refs = simplify(answer,refs,docs) |
|
|
|
sentence_without_refs = re.sub(r'\[\d+\]', '', answer) |
|
|
|
if last_ref_index is not None: |
|
output = sentence_without_refs[:last_ref_index - len(refs_str)] + simplified_refs + sentence_without_refs[last_ref_index - len(refs_str):] |
|
else: |
|
output = sentence_without_refs + simplified_refs |
|
|
|
if not simplified_refs and self.allow_empty: |
|
output = '' |
|
|
|
|
|
if self.multi_process: |
|
self.last_message.append(output) |
|
else: |
|
self.last_message = output |
|
|
|
return output |
|
|
|
|
|
class Verifier(Module): |
|
|
|
''' |
|
Verifier is currently only used for single sentence/single target answer, not for parallel or iterative answer. |
|
Verifier will return dynamic prompt, not like other modules returning output. It is a judger only to decide the target module. |
|
By default, the verifoer verifies whether the documents support the answer. |
|
''' |
|
model_type = 'verifier' |
|
def __init__(self, prompt_maker = None, pipeline=None, self_prompt={}, criteria = None, key = 'answer', test = False) -> None: |
|
Module.__init__(self,prompt_maker, pipeline, self_prompt) |
|
if not test: |
|
self.entail = _run_nli_autoais |
|
else: |
|
self.entail = lambda p,c : random.randint(0,1) |
|
self.docs = ['s'] * 100 |
|
self.key = key |
|
self.test = test |
|
|
|
|
|
def verifier_judge(self,**kargs): |
|
docs = self.pipeline.doc_cache |
|
answer = kargs[self.key] |
|
refs = re.findall(r'\[\d+\]', answer) |
|
if not refs: |
|
return False |
|
ref_numbers = [int(ref.strip('[]')) for ref in refs] |
|
|
|
docs_combined = ''.join(docs[ref - 1] for ref in ref_numbers if ref - 1 < len(docs)) |
|
return bool(self.entail(docs_combined, re.sub(r'\[\d+\]', '', answer))) |
|
|
|
|
|
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}): |
|
prompt = {**head_prompt, **dynamic_prompt} |
|
out = self.verifier_judge(**prompt) |
|
|
|
self.last_message = out |
|
|
|
self.turns += 1 |
|
return dynamic_prompt |
|
|
|
|
|
class AugmentCluster(): |
|
def __init__(self, module_list = []) -> None: |
|
self.module_list = module_list |
|
module_count = len(module_list) |
|
for i in range(module_count - 1): |
|
assert isinstance(module_list[i],LLM) and isinstance(module_list[i+1],LLM) |
|
module_list[i].set_target(module_list[i+1], post_processing = module_list[i].post_processing) |
|
|
|
def get_first_module(self): |
|
return self.module_list[0] |
|
|
|
def get_destinations(self): |
|
return self.module_list[-1].get_destinations() |
|
|
|
def reset(self): |
|
for module in self.module_list: |
|
module.reset() |
|
|
|
def update(self, config, update_info): |
|
print('updating the AugmentCluster', update_info) |
|
self.module_list[-1].update(config, update_info) |
|
|
|
def __str__(self): |
|
print('getting str of the cluster', ' -> '.join([str(module) for module in self.module_list])) |
|
return ' -> '.join([str(module) for module in self.module_list]) |
|
|
|
def set_target(self,destination, condition = lambda self: True, post_processing = lambda x: x) -> None: |
|
self.module_list[-1].set_target(destination, condition, post_processing) |
|
|
|
def set_output(self, cond = lambda self: True, post_processing = lambda x:x, end = True): |
|
self.module_list[-1].set_output(cond, post_processing, end) |
|
|
|
def connect_to(self, pipeline = None) -> None: |
|
for module in self.module_list: |
|
module.connect_to(pipeline) |
|
pipeline.stored_clusters.append(self) |
|
|
|
|
|
class Attribute_post_select(LLM): |
|
noisy = False |
|
model_name = 'function' |
|
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}): |
|
print('post_select', head_prompt, dynamic_prompt) |
|
docs = head_prompt['docs'] |
|
ans_docs = one_paragraph(dynamic_prompt['span']).split("\n") |
|
spans = [ans_doc[14:].split("<SPAN_DELIM>") for ans_doc in ans_docs] |
|
msg = '' |
|
span_list = {} |
|
doc_map = {} |
|
j = 1 |
|
i = 1 |
|
for doc in spans: |
|
if doc!= [] : |
|
span_list[f'{i}'] = [] |
|
msg += f'Document [{i}]:\n' |
|
for span in doc: |
|
if len(span)> 3: |
|
msg += f'{j}. {span}\n' |
|
span_list[f'{i}'].append(f'{j}. {span.strip()}') |
|
doc_map[str(j)] = str(i) |
|
j+=1 |
|
docs = docs.replace(span.strip(), f'<highlight_start>{span.strip()}<highlight_end>') |
|
i+=1 |
|
self.pipeline.head['doc_map'] = doc_map |
|
self.pipeline.head['docs'] = docs |
|
self.pipeline.head['span'] = msg |
|
self.pipeline.head['span_list'] = span_list |
|
return {'span_list': Prompt.UNABLE,'doc_map': Prompt.UNABLE} |
|
|
|
class Attribute_post_cluster(LLM): |
|
noisy = False |
|
model_name = 'function' |
|
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}): |
|
print('f1', head_prompt, dynamic_prompt) |
|
span_ls = head_prompt['span_list'] |
|
doc_map = head_prompt['doc_map'] |
|
span_list = [item for sublist in head_prompt['span_list'].values() for item in sublist] |
|
clusters = eval(one_paragraph(dynamic_prompt['cls'].strip())) |
|
self.pipeline.head['clusters'] = clusters |
|
def _form(cls): |
|
text = '' |
|
doc_list = cls['cluster'] |
|
for doc_num in span_ls.keys(): |
|
pieces = [str(i) for i in doc_list if doc_map.get(str(i),'None') == doc_num] |
|
if pieces: |
|
text += f'Document [{doc_num}]: \n' + '\n'.join([span_list[int(num)-1] for num in pieces]) + '\n' |
|
|
|
return(text) |
|
|
|
return [{'span': _form(cls),'span_list': Prompt.UNABLE,'doc_map': Prompt.UNABLE,'clusters':Prompt.UNABLE,'docs':Prompt.UNABLE} for cls in clusters if _form(cls)] |
|
|
|
class Ranker(EvalModule): |
|
|
|
def __init__(self, prompt_maker=None, pipeline=None, self_prompt={}, criteria=None,iterative = True, max_turn = 3, parallel = False, post_processing = lambda x : x, fixed_turn = None) -> None: |
|
super().__init__(prompt_maker, pipeline, self_prompt, criteria, iterative = iterative, max_turn = max_turn, parallel = parallel) |
|
self.compare = [] |
|
self.post_processing = post_processing |
|
if fixed_turn: |
|
self.fixed_turn = fixed_turn |
|
else: |
|
self.fixed_turn = max_turn |
|
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}): |
|
|
|
self.turns += 1 |
|
result = {} |
|
p_data = {**head_prompt, **self.self_prompt,**dynamic_prompt} |
|
for criteria, get_data in self.get_data.items(): |
|
data_dict = {} |
|
for k, v in get_data.items(): |
|
if v == 'doc_cache': |
|
data_dict[k] = self.pipeline.doc_cache.show_docs() |
|
else: |
|
if v in p_data.keys(): |
|
data_dict[k] = p_data[v] |
|
else: |
|
data_dict[k] = self.pipeline.current_data[v] |
|
eval_func = self.eval_criteria[criteria] |
|
data = [data_dict] |
|
result[criteria] = eval_func(data) |
|
|
|
result = sum([value for key, value in result.items()]) |
|
self.compare.append((result,dynamic_prompt)) |
|
output = max(self.compare,key = lambda x:x[0])[1] |
|
destination = self.send() |
|
self.last_message = output |
|
if len(self.compare) == self.fixed_turn: |
|
self.compare = [] |
|
if destination in self.conditions: |
|
return self.conditions[destination]['post_processing'](output) |
|
else: |
|
return self.post_processing(output) |
|
|
|
return {} |
|
|
|
def end_multi(self): |
|
self.compare = [] |
|
return super().end_multi() |
|
|
|
|
|
|
|
class AttributingModule(AugmentCluster): |
|
model_type = 'attributer' |
|
demo ={ |
|
"selection_instruction":"In this task, you are presented with several documents, which need to be summarized. As an intermediate step, you need to identify salient content within the documents. For each document, copy verbatim the salient spans, and use <SPAN_DELIM> as a delimiter between each consecutive span. IMPORTANT: The output must be of the format Document [<DOC_ID>]: <SPAN_DELIM>-delimited consecutive salient spans. IMPORTANT: Each salient content must be a single consecutive verbatim span from the corresponding passages. IMPORTANT: make sure the total number of copied words (from all documents) is around 200 words, and not more than 900.", |
|
"selection_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. Cherrapunji has often been credited as being the wettest place on Earth, but for now nearby Mawsynram currently holds that distinction. Cherrapunji still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. Cherrapunji has often been credited as being the wettest place on Earth, but for now nearby Mawsynram currently holds that distinction. Cherrapunji still holds the all-time record for the most rainfall\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. Mawsynram receives one of the highest rainfalls in India. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 and L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25掳 18鈥瞈" \n\nAnswer: \nDocument [1]: <SPAN_DELIM>Cherrapunji has often been credited as being the wettest place on Earth<SPAN_DELIM> still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<SPAN_DELIM> \nDocument [2]: <SPAN_DELIM>Cherrapunji has often been credited as being the wettest place on Earth<SPAN_DELIM>still holds the all-time record for the most rainfall<SPAN_DELIM> \nDocument [3]: <SPAN_DELIM>Mawsynram receives one of the highest rainfalls in India <SPAN_DELIM> but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 <SPAN_DELIM> L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. <SPAN_DELIM>", |
|
"clustering_instruction":"In this task, you are presented with several passages, where some parts are \"highlighted\" (namely, there are <highlight_start> and <highlight_end> tokens before and after each such span). The goal is to fuse all those highlights into a single summary. As an intermediate step, you need to cluster highlights that can be merged into a sentence (namely, each cluster will be later merged into one sentence). Make sure the clusters are in the same order you would then write the corresponding summary sentences. IMORTANT: make sure there are at most 3 clusters, and no more than 3 highlights per cluster. IMPORTANT: The output must be of the format [\"cluster\":[comma-delimited highlights indices]]", |
|
"clustering_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. Cherrapunji <highlight_start>still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<highlight_end>, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. <highlight_start>Cherrapunji still holds the all-time record for the most rainfall<highlight_end>\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. <highlight_start>Mawsynram receives one of the highest rainfalls in India<highlight_end>. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, <highlight_start>but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989<highlight_end> and <highlight_start>L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012.<highlight_end> According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25掳 18鈥瞈" \n\nThe highlighted spans are: \nDocument [1]: 1. Cherrapunji has often been credited as being the wettest place on Earth \n2. still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861 \nDocument [2]: \n3. Cherrapunji has often been credited as being the wettest place on Earth \n4. still holds the all-time record for the most rainfall \nDocument [3]: \n5. Mawsynram receives one of the highest rainfalls in India \n6. but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 \n7. L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. \n\nAnswer: \nThe highlighted spans are clustered as follows: \n[{\"cluster\":[6,7]}, {\"cluster\":[5]},{\"cluster\":[1,2]}]", |
|
"gen_instruction":"In this task, you are presented with several passages, where some parts are \"highlighted\" (namely, there are <highlight_start> and <highlight_end> tokens before and after each such span). You may also be presented with a prefix of the answer. You job is to generate the next sentence of the answer, that covers all and only the \"highlighted\" spans. Make sure it connects well with the prefix(if eixists), and that it covers all and only the \"highlighted\" spans. Always cite for any factual claim. When citing several search results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If multiple documents support the sentence, only cite a minimum sufficient subset of the documents.", |
|
"gen_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. Cherrapunji <highlight_start>still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<highlight_end>, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. <highlight_start>Cherrapunji still holds the all-time record for the most rainfall<highlight_end>\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. <highlight_start>Mawsynram receives one of the highest rainfalls in India<highlight_end>. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, <highlight_start>but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989<highlight_end> and <highlight_start>L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012.<highlight_end> According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25掳 18鈥瞈" \n\nPrefix: Several places on Earth claim to be the most rainy, such as Llor贸, Colombia, which reported an average annual rainfall of 12,717 mm between 1952 and 1989, and L贸pez de Micay, Colombia, which reported an annual 12,892 mm between 1960 and 2012 [3]. \n\nThe highlighted spans are: \nDocument [3]: \n5. Mawsynram receives one of the highest rainfalls in India \n\nAnswer: \nThe next sentence is: \nHowever, the official record is held by Mawsynram, India with an average annual rainfall of 11,872 mm [3]." |
|
} |
|
PARA_SEP = '\n\n' |
|
selection_shot = demo['selection_instruction'] + PARA_SEP + demo['selection_shot'] + PARA_SEP |
|
cls_shot = demo['clustering_instruction'] + PARA_SEP + demo['clustering_shot'] + PARA_SEP |
|
gen_shot = demo['gen_instruction'] + PARA_SEP + demo['gen_shot'] + PARA_SEP |
|
prompt = Prompt(template='<shot><INST><question><docs><prefix><span><add>', |
|
components={'INST':'{INST}\n\n', |
|
'shot':'{shot}', |
|
'question':'Question:{question}\n\n', |
|
'docs':'{docs}\n', |
|
'span':'The highlighted spans are: \n{span}\n\n', |
|
'prefix':'Prefix: {prefix}\n\n', |
|
'add':'Answer: \n{add}' |
|
}) |
|
def __init__(self, model) -> None: |
|
module_list = [] |
|
select = LLM(model = model, prompt_maker = self.prompt, self_prompt={'INST':self.demo['selection_instruction'],'shot':self.selection_shot,'add':''}, post_processing=make_as('span'),noisy= False) |
|
post_select = Attribute_post_select() |
|
clustering = LLM(model = model, prompt_maker = self.prompt, self_prompt={'INST':self.demo['clustering_instruction'],'shot':self.cls_shot, 'add':'The highlighted spans are clustered as follows:'},share_model_with=select, post_processing=make_as('cls'),noisy=False) |
|
post_cls = Attribute_post_cluster() |
|
module_list = [select,post_select,clustering,post_cls] |
|
super().__init__(module_list) |
|
|
|
MODEL_TYPE_MAPPING = { |
|
'retrieve': Retriever, |
|
'eval': EvalModule, |
|
'simplify': CitationSimplyfier, |
|
'verify': Verifier, |
|
'rank': Ranker, |
|
'attributing': AttributingModule |
|
} |