VascoDVRodrigues commited on
Commit
8e5798a
·
1 Parent(s): 71a8d2b

changed README

Browse files
Files changed (1) hide show
  1. README.md +72 -2
README.md CHANGED
@@ -13,6 +13,76 @@ app_file: app.py
13
  pinned: false
14
  ---
15
 
16
- # Metric Card for MOT Metrics
17
 
18
- ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  pinned: false
14
  ---
15
 
16
+ # How to Use
17
 
18
+ The MOT metrics takes two numeric arrays as input corresponding to the predictions and references bounding boxes:
19
+ ```python
20
+ >>> import numpy as np
21
+ >>> module = evaluate.load("SEA-AI/mot-metrics")
22
+ >>> predicted =[[1,1,10,20,30,40,0.85],[2,1,15,25,35,45,0.78],[2,2,55,65,75,85,0.95]]
23
+ >>> ground_truth = [[1, 1, 10, 20, 30, 40],[2, 1, 15, 25, 35, 45]]
24
+
25
+ >>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
26
+ >>> results
27
+ {'idf1': 0.8421052631578947, 'idp': 0.8888888888888888,
28
+ 'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
29
+ 'num_unique_objects': 3,'mostly_tracked': 2,
30
+ 'partially_tracked': 1, 'mostly_lost': 0,
31
+ 'num_false_positives': 1, 'num_misses': 2,
32
+ 'num_switches': 0, 'num_fragmentations': 0,
33
+ 'mota': 0.7, 'motp': 0.02981870229007634,
34
+ 'num_transfer': 0, 'num_ascend': 0,
35
+ 'num_migrate': 0}
36
+ ```
37
+
38
+ ## Input
39
+ Each line of the **predictions** array is a list with the following format:
40
+ ```
41
+ [frame ID, object ID, x, y, width, height, confidence]
42
+ ```
43
+
44
+ Each line of the **references** array is a list with the following format:
45
+ ```
46
+ [frame ID, object ID, x, y, width, height]
47
+ ```
48
+
49
+ The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association.
50
+
51
+ ## Output
52
+ The output is a dictionary containing the following metrics:
53
+
54
+ | Name | Description |
55
+ | :------------------- | :--------------------------------------------------------------------------------- |
56
+ | idf1 | ID measures: global min-cost F1 score. |
57
+ | idp | ID measures: global min-cost precision. |
58
+ | idr | ID measures: global min-cost recall. |
59
+ | recall | Number of detections over number of objects. |
60
+ | precision | Number of detected objects over sum of detected and false positives. |
61
+ | num_unique_objects | Total number of unique object ids encountered. |
62
+ | mostly_tracked | Number of objects tracked for at least 80 percent of lifespan. |
63
+ | partially_tracked | Number of objects tracked between 20 and 80 percent of lifespan. |
64
+ | mostly_lost | Number of objects tracked less than 20 percent of lifespan. |
65
+ | num_false_positives | Total number of false positives (false-alarms). |
66
+ | num_misses | Total number of misses. |
67
+ | num_switches | Total number of track switches. |
68
+ | num_fragmentations | Total number of switches from tracked to not tracked. |
69
+ | mota | Multiple object tracker accuracy. |
70
+ | motp | Multiple object tracker precision. |
71
+
72
+
73
+ ## Citations
74
+ ```bibtex
75
+ @InProceedings{huggingface:module,
76
+ title = {A great new module},
77
+ authors={huggingface, Inc.},
78
+ year={2020}}
79
+
80
+ @article{milan2016mot16,
81
+ title={MOT16: A benchmark for multi-object tracking},
82
+ author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
83
+ journal={arXiv preprint arXiv:1603.00831},
84
+ year={2016}}
85
+ ```
86
+
87
+ ## Further References
88
+ - [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop)