Spaces:
Sleeping
Sleeping
VascoDVRodrigues
commited on
Commit
·
40c6d5b
1
Parent(s):
58ff7c0
1st commit
Browse files- app.py +6 -0
- mot-metrics.py +187 -0
- requirements.txt +3 -0
- tests.py +37 -0
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("SEA-AI/mot-metrics")
|
6 |
+
launch_gradio_widget(module)
|
mot-metrics.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import evaluate
|
16 |
+
import datasets
|
17 |
+
import motmetrics as mm
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
_CITATION = """\
|
21 |
+
@InProceedings{huggingface:module,
|
22 |
+
title = {A great new module},
|
23 |
+
authors={huggingface, Inc.},
|
24 |
+
year={2020}
|
25 |
+
}\
|
26 |
+
@article{milan2016mot16,
|
27 |
+
title={MOT16: A benchmark for multi-object tracking},
|
28 |
+
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
|
29 |
+
journal={arXiv preprint arXiv:1603.00831},
|
30 |
+
year={2016}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
|
36 |
+
algorithms by computing various metrics based on predicted and ground truth bounding
|
37 |
+
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
|
38 |
+
aiding in the iterative improvement of tracking algorithms."""
|
39 |
+
|
40 |
+
|
41 |
+
_KWARGS_DESCRIPTION = """
|
42 |
+
|
43 |
+
Calculates how good are predictions given some references, using certain scores
|
44 |
+
Args:
|
45 |
+
predictions: list of predictions to score. Each predictions
|
46 |
+
should be a string with tokens separated by spaces.
|
47 |
+
references: list of reference for each prediction. Each
|
48 |
+
reference should be a string with tokens separated by spaces.
|
49 |
+
max_iou (`float`, *optional*):
|
50 |
+
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
|
51 |
+
Default is 0.5.
|
52 |
+
Returns:
|
53 |
+
summary: pandas.DataFrame with the following columns:
|
54 |
+
- idf1 (IDF1 Score): The F1 score for the identity assignment, computed as 2 * (IDP * IDR) / (IDP + IDR).
|
55 |
+
- idp (ID Precision): Identity Precision, representing the ratio of correctly assigned identities to the total number of predicted identities.
|
56 |
+
- idr (ID Recall): Identity Recall, representing the ratio of correctly assigned identities to the total number of ground truth identities.
|
57 |
+
- recall: Recall, computed as the ratio of the number of correctly tracked objects to the total number of ground truth objects.
|
58 |
+
- precision: Precision, computed as the ratio of the number of correctly tracked objects to the total number of predicted objects.
|
59 |
+
- num_unique_objects: Total number of unique objects in the ground truth.
|
60 |
+
- mostly_tracked: Number of objects that are mostly tracked throughout the sequence.
|
61 |
+
- partially_tracked: Number of objects that are partially tracked but not mostly tracked.
|
62 |
+
- mostly_lost: Number of objects that are mostly lost throughout the sequence.
|
63 |
+
- num_false_positives: Number of false positive detections (predicted objects not present in the ground truth).
|
64 |
+
- num_misses: Number of missed detections (ground truth objects not detected in the predictions).
|
65 |
+
- num_switches: Number of identity switches.
|
66 |
+
- num_fragmentations: Number of fragmented objects (objects that are broken into multiple tracks).
|
67 |
+
- mota (MOTA - Multiple Object Tracking Accuracy): Overall tracking accuracy, computed as 1 - ((num_false_positives + num_misses + num_switches) / num_unique_objects).
|
68 |
+
- motp (MOTP - Multiple Object Tracking Precision): Average precision of the object localization, computed as the mean of the localization errors of correctly detected objects.
|
69 |
+
- num_transfer: Number of track transfers.
|
70 |
+
- num_ascend: Number of ascended track IDs.
|
71 |
+
- num_migrate: Number of track ID migrations.
|
72 |
+
|
73 |
+
Examples:
|
74 |
+
>>> import numpy as np
|
75 |
+
>>> module = evaluate.load("bascobasculino/mot-metrics")
|
76 |
+
|
77 |
+
>>> predicted =[
|
78 |
+
[1,1,10,20,30,40,0.85],
|
79 |
+
[1,2,50,60,70,80,0.92],
|
80 |
+
[1,3,80,90,100,110,0.75],
|
81 |
+
[2,1,15,25,35,45,0.78],
|
82 |
+
[2,2,55,65,75,85,0.95],
|
83 |
+
[3,1,20,30,40,50,0.88],
|
84 |
+
[3,2,60,70,80,90,0.82],
|
85 |
+
[4,1,25,35,45,55,0.91],
|
86 |
+
[4,2,65,75,85,95,0.89]
|
87 |
+
]
|
88 |
+
|
89 |
+
>>> ground_truth = [
|
90 |
+
[1, 1, 10, 20, 30, 40],
|
91 |
+
[1, 2, 50, 60, 70, 80],
|
92 |
+
[1, 3, 85, 95, 105, 115],
|
93 |
+
[2, 1, 15, 25, 35, 45],
|
94 |
+
[2, 2, 55, 65, 75, 85],
|
95 |
+
[3, 1, 20, 30, 40, 50],
|
96 |
+
[3, 2, 60, 70, 80, 90],
|
97 |
+
[4, 1, 25, 35, 45, 55],
|
98 |
+
[5, 1, 30, 40, 50, 60],
|
99 |
+
[5, 2, 70, 80, 90, 100]
|
100 |
+
]
|
101 |
+
>>> predicted = [np.array(a) for a in predicted]
|
102 |
+
>>> ground_truth = [np.array(a) for a in ground_truth]
|
103 |
+
|
104 |
+
>>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
|
105 |
+
>>> print(results)
|
106 |
+
{'idf1': 0.8421052631578947, 'idp': 0.8888888888888888, 'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
|
107 |
+
'num_unique_objects': 3,'mostly_tracked': 2, 'partially_tracked': 1, 'mostly_lost': 0, 'num_false_positives': 1,
|
108 |
+
'num_misses': 2, 'num_switches': 0, 'num_fragmentations': 0, 'mota': 0.7, 'motp': 0.02981870229007634,
|
109 |
+
'num_transfer': 0, 'num_ascend': 0, 'num_migrate': 0}
|
110 |
+
"""
|
111 |
+
|
112 |
+
|
113 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
114 |
+
class MotMetrics(evaluate.Metric):
|
115 |
+
"""TODO: Short description of my evaluation module."""
|
116 |
+
|
117 |
+
def _info(self):
|
118 |
+
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
119 |
+
return evaluate.MetricInfo(
|
120 |
+
# This is the description that will appear on the modules page.
|
121 |
+
module_type="metric",
|
122 |
+
description=_DESCRIPTION,
|
123 |
+
citation=_CITATION,
|
124 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
125 |
+
# This defines the format of each prediction and reference
|
126 |
+
features=datasets.Features({
|
127 |
+
"predictions": datasets.Sequence(
|
128 |
+
datasets.Sequence(datasets.Value("float"))
|
129 |
+
),
|
130 |
+
"references": datasets.Sequence(
|
131 |
+
datasets.Sequence(datasets.Value("float"))
|
132 |
+
)
|
133 |
+
}),
|
134 |
+
# Additional links to the codebase or references
|
135 |
+
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
136 |
+
reference_urls=["http://path.to.reference.url/new_module"]
|
137 |
+
)
|
138 |
+
|
139 |
+
def _download_and_prepare(self, dl_manager):
|
140 |
+
"""Optional: download external resources useful to compute the scores"""
|
141 |
+
# TODO: Download external resources if needed
|
142 |
+
pass
|
143 |
+
|
144 |
+
def _compute(self, predictions, references, max_iou: float = 0.5):
|
145 |
+
"""Returns the scores"""
|
146 |
+
# TODO: Compute the different scores of the module
|
147 |
+
|
148 |
+
return calculate(predictions, references, max_iou)
|
149 |
+
|
150 |
+
def calculate(predictions, references, max_iou: float = 0.5):
|
151 |
+
"""Returns the scores"""
|
152 |
+
try:
|
153 |
+
np_predictions = np.array(predictions)
|
154 |
+
except:
|
155 |
+
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
|
156 |
+
|
157 |
+
try:
|
158 |
+
np_references = np.array(references)
|
159 |
+
except:
|
160 |
+
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
|
161 |
+
|
162 |
+
if np_predictions.shape[1] != 7:
|
163 |
+
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
|
164 |
+
if np_references.shape[1] != 6:
|
165 |
+
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
|
166 |
+
|
167 |
+
if np_predictions[:, 0].min() <= 0:
|
168 |
+
raise ValueError("The frame number in the predictions should be a positive integer")
|
169 |
+
if np_references[:, 0].min() <= 0:
|
170 |
+
raise ValueError("The frame number in the references should be a positive integer")
|
171 |
+
|
172 |
+
|
173 |
+
num_frames = max(np_references[:, 0].max(), np_predictions[:, 0].max())
|
174 |
+
|
175 |
+
acc = mm.MOTAccumulator(auto_id=True)
|
176 |
+
for i in range(1, num_frames+1):
|
177 |
+
preds = np_predictions[np_predictions[:, 0] == i, 1:6]
|
178 |
+
refs = np_references[np_references[:, 0] == i, 1:6]
|
179 |
+
C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
|
180 |
+
acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)
|
181 |
+
|
182 |
+
mh = mm.metrics.create()
|
183 |
+
summary = mh.compute(acc).to_dict()
|
184 |
+
for key in summary:
|
185 |
+
summary[key] = summary[key][0]
|
186 |
+
|
187 |
+
return summary
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
numpy
|
3 |
+
motmetrics
|
tests.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
test_cases = [
|
3 |
+
{
|
4 |
+
"predictions": [np.array(a) for a in [
|
5 |
+
[1,1,10,20,30,40,0.85],
|
6 |
+
[1,2,50,60,70,80,0.92],
|
7 |
+
[1,3,80,90,100,110,0.75],
|
8 |
+
[2,1,15,25,35,45,0.78],
|
9 |
+
[2,2,55,65,75,85,0.95],
|
10 |
+
[3,1,20,30,40,50,0.88],
|
11 |
+
[3,2,60,70,80,90,0.82],
|
12 |
+
[4,1,25,35,45,55,0.91],
|
13 |
+
[4,2,65,75,85,95,0.89]
|
14 |
+
]],
|
15 |
+
"references": [np.array(a) for a in [
|
16 |
+
[1, 1, 10, 20, 30, 40],
|
17 |
+
[1, 2, 50, 60, 70, 80],
|
18 |
+
[1, 3, 85, 95, 105, 115],
|
19 |
+
[2, 1, 15, 25, 35, 45],
|
20 |
+
[2, 2, 55, 65, 75, 85],
|
21 |
+
[3, 1, 20, 30, 40, 50],
|
22 |
+
[3, 2, 60, 70, 80, 90],
|
23 |
+
[4, 1, 25, 35, 45, 55],
|
24 |
+
[5, 1, 30, 40, 50, 60],
|
25 |
+
[5, 2, 70, 80, 90, 100]
|
26 |
+
]],
|
27 |
+
"result": {'idf1': 0.8421052631578947, 'idp': 0.8888888888888888,
|
28 |
+
'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
|
29 |
+
'num_unique_objects': 3,'mostly_tracked': 2,
|
30 |
+
'partially_tracked': 1, 'mostly_lost': 0,
|
31 |
+
'num_false_positives': 1, 'num_misses': 2,
|
32 |
+
'num_switches': 0, 'num_fragmentations': 0,
|
33 |
+
'mota': 0.7, 'motp': 0.02981870229007634,
|
34 |
+
'num_transfer': 0, 'num_ascend': 0,
|
35 |
+
'num_migrate': 0}
|
36 |
+
},
|
37 |
+
]
|