Spaces:
Sleeping
Sleeping
hichem-abdellali
commited on
Update det-metrics.py
Browse filesmoved the _add_batch and _fo_dets_to_metrics_dict to the seametrics utils
- det-metrics.py +4 -81
det-metrics.py
CHANGED
@@ -20,6 +20,8 @@ import datasets
|
|
20 |
import numpy as np
|
21 |
|
22 |
from seametrics.detection import PrecisionRecallF1Support
|
|
|
|
|
23 |
|
24 |
_CITATION = """\
|
25 |
@InProceedings{coco:2020,
|
@@ -167,34 +169,9 @@ class DetectionMetric(evaluate.Metric):
|
|
167 |
"""
|
168 |
# populate two empty lists in format suitable for hugging face metric
|
169 |
# nothing is computed based on them but prevents huggingface error
|
170 |
-
predictions, references = [], []
|
171 |
|
172 |
-
if model is None:
|
173 |
-
model = data["models"][0]
|
174 |
|
175 |
-
|
176 |
-
seq_data = data["sequences"][sequence]
|
177 |
-
gt_normalized = seq_data[data["gt_field_name"]] # shape: (n_frames, m_gts)
|
178 |
-
pred_normalized = seq_data[model] # shape: (n_frames, l_preds)
|
179 |
-
img_res = seq_data["resolution"] # (h, w)
|
180 |
-
for gt_frame, pred_frame in zip(gt_normalized, pred_normalized): # iterate over all frame
|
181 |
-
processed_pred = self._fo_dets_to_metrics_dict(
|
182 |
-
fo_dets=pred_frame,
|
183 |
-
w=img_res[1],
|
184 |
-
h=img_res[0],
|
185 |
-
include_scores=True
|
186 |
-
)
|
187 |
-
processed_gt = self._fo_dets_to_metrics_dict(
|
188 |
-
fo_dets=gt_frame,
|
189 |
-
w=img_res[1],
|
190 |
-
h=img_res[0],
|
191 |
-
include_scores=False
|
192 |
-
)
|
193 |
-
predictions.append(processed_pred[0]["boxes"].tolist())
|
194 |
-
references.append(processed_gt[0]["boxes"].tolist())
|
195 |
-
|
196 |
-
# where the magic happens: update metric with data from current frame
|
197 |
-
self.coco_metric.update(processed_pred, processed_gt)
|
198 |
|
199 |
# prevents hugging face error, doesn't do a lot
|
200 |
super(evaluate.Metric, self).add_batch(
|
@@ -202,6 +179,7 @@ class DetectionMetric(evaluate.Metric):
|
|
202 |
references=references
|
203 |
)
|
204 |
|
|
|
205 |
def _compute(
|
206 |
self,
|
207 |
predictions,
|
@@ -210,58 +188,3 @@ class DetectionMetric(evaluate.Metric):
|
|
210 |
"""Returns the scores"""
|
211 |
result = self.coco_metric.compute()["metrics"]
|
212 |
return result
|
213 |
-
|
214 |
-
@staticmethod
|
215 |
-
def _fo_dets_to_metrics_dict(fo_dets: list,
|
216 |
-
w: int,
|
217 |
-
h: int,
|
218 |
-
include_scores: bool = False) -> List[Dict[str, np.ndarray]]:
|
219 |
-
"""Convert list of fiftyone detections to format that is
|
220 |
-
required by PrecisionRecallF1Support() function of seametrics library
|
221 |
-
|
222 |
-
Args:
|
223 |
-
fo_dets (list): list containing fiftyone detections (or empty if frame without any detections)
|
224 |
-
note: bounding boxes in fo-detections are in format xywhn
|
225 |
-
w (int): width in pixel of image
|
226 |
-
h (int): height in pixel of image
|
227 |
-
|
228 |
-
Returns:
|
229 |
-
List[Dict[str, np.ndarray]]: list holding single dict with items:
|
230 |
-
"boxes": denormalized bounding boxes of whole frame in numpy array (shape: n_bboxes, 4)
|
231 |
-
"scores": confidence scores in numpy array (shape: n_bboxes)
|
232 |
-
"labels": labels in numpy array (shape: n_bboxes)
|
233 |
-
"""
|
234 |
-
detections = []
|
235 |
-
scores = []
|
236 |
-
labels = [] #TODO: map to numbers
|
237 |
-
if len(fo_dets) == 0:
|
238 |
-
return [
|
239 |
-
dict(
|
240 |
-
boxes=np.array([]),
|
241 |
-
scores=np.array([]),
|
242 |
-
labels=np.array([])
|
243 |
-
)
|
244 |
-
]
|
245 |
-
for det in fo_dets:
|
246 |
-
bbox = det["bounding_box"]
|
247 |
-
detections.append(
|
248 |
-
[bbox[0]*w, bbox[1]*h, bbox[2]*w, bbox[3]*h]
|
249 |
-
)
|
250 |
-
scores.append(det["confidence"] if det["confidence"] is not None else 1.0) # None for gt
|
251 |
-
labels.append(1)
|
252 |
-
|
253 |
-
if include_scores:
|
254 |
-
return [
|
255 |
-
dict(
|
256 |
-
boxes=np.array(detections),
|
257 |
-
scores=np.array(scores),
|
258 |
-
labels=np.array(labels)
|
259 |
-
)
|
260 |
-
]
|
261 |
-
else:
|
262 |
-
return [
|
263 |
-
dict(
|
264 |
-
boxes=np.array(detections),
|
265 |
-
labels=np.array(labels)
|
266 |
-
)
|
267 |
-
]
|
|
|
20 |
import numpy as np
|
21 |
|
22 |
from seametrics.detection import PrecisionRecallF1Support
|
23 |
+
from seametrics.fo_utils.utils import _fo_dets_to_metrics_dict
|
24 |
+
from seametrics.fo_utils.utils import _add_batch
|
25 |
|
26 |
_CITATION = """\
|
27 |
@InProceedings{coco:2020,
|
|
|
169 |
"""
|
170 |
# populate two empty lists in format suitable for hugging face metric
|
171 |
# nothing is computed based on them but prevents huggingface error
|
|
|
172 |
|
|
|
|
|
173 |
|
174 |
+
self, predictions,references = _add_batch(self, data, model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
# prevents hugging face error, doesn't do a lot
|
177 |
super(evaluate.Metric, self).add_batch(
|
|
|
179 |
references=references
|
180 |
)
|
181 |
|
182 |
+
|
183 |
def _compute(
|
184 |
self,
|
185 |
predictions,
|
|
|
188 |
"""Returns the scores"""
|
189 |
result = self.coco_metric.compute()["metrics"]
|
190 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|