Spaces:
Running
Running
sashavor
commited on
Commit
·
78cdedf
1
Parent(s):
9b28e54
trying
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
import pickle
|
4 |
|
5 |
import gradio as gr
|
6 |
from datasets import load_dataset
|
7 |
-
from transformers import AutoModel
|
8 |
|
9 |
|
10 |
seed = 42
|
@@ -18,38 +16,21 @@ feature_extractor = AutoFeatureExtractor.from_pretrained("abhishek/autotrain-but
|
|
18 |
model = AutoModel.from_pretrained("abhishek/autotrain-butterflies-new-17716425")
|
19 |
|
20 |
# Candidate images.
|
21 |
-
dataset = load_dataset("
|
22 |
-
|
23 |
|
24 |
|
25 |
def query(image, top_k):
|
26 |
inputs = feature_extractor(image, return_tensors="pt")
|
27 |
model_output = model(**inputs)
|
28 |
-
embedding = model_output.pooler_output
|
29 |
results = index.query(embedding)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
candidates = []
|
37 |
-
|
38 |
-
for idx, r in enumerate(sorted(results, key=results.get, reverse=True)):
|
39 |
-
if idx == top_k:
|
40 |
-
break
|
41 |
-
image_id, label = r.split("_")[0], r.split("_")[1]
|
42 |
-
candidates.append(candidate_dataset[int(image_id)]["image"])
|
43 |
-
labels.append(f"Label: {label}")
|
44 |
-
|
45 |
-
for i, candidate in enumerate(candidates):
|
46 |
-
filename = f"similar_{i}.png"
|
47 |
-
candidate.save(filename)
|
48 |
-
images.append(filename)
|
49 |
-
|
50 |
-
# The gallery component can be a list of tuples, where the first element is a path to a file
|
51 |
-
# and the second element is an optional caption for that image
|
52 |
-
return list(zip(images, labels))
|
53 |
|
54 |
|
55 |
title = "Find my Butterfly 🦋"
|
|
|
|
|
|
|
1 |
import pickle
|
2 |
|
3 |
import gradio as gr
|
4 |
from datasets import load_dataset
|
5 |
+
from transformers import AutoModel, AutoFeatureExtractor
|
6 |
|
7 |
|
8 |
seed = 42
|
|
|
16 |
model = AutoModel.from_pretrained("abhishek/autotrain-butterflies-new-17716425")
|
17 |
|
18 |
# Candidate images.
|
19 |
+
dataset = load_dataset("sasha/butterflies_names_multiple")
|
20 |
+
ds = dataset["train"]
|
21 |
|
22 |
|
23 |
def query(image, top_k):
|
24 |
inputs = feature_extractor(image, return_tensors="pt")
|
25 |
model_output = model(**inputs)
|
26 |
+
embedding = model_output.pooler_output.detach()
|
27 |
results = index.query(embedding)
|
28 |
+
images=[]
|
29 |
+
for i in results[0].tolist():
|
30 |
+
print(i)
|
31 |
+
print(type(i))
|
32 |
+
images.append(ds.select(i)["image"])
|
33 |
+
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
title = "Find my Butterfly 🦋"
|