synclm-demo / utils /fallback_suggester.py
SCBconsulting's picture
Update utils/fallback_suggester.py
404a876 verified
# utils/fallback_suggester.py
import json
from sentence_transformers import SentenceTransformer, util
# πŸ” Load pre-trained semantic similarity model
model = SentenceTransformer("sentence-transformers/paraphrase-mpnet-base-v2")
# πŸ“š Load fallback clause database
with open("fallback_clauses.json", "r", encoding="utf-8") as f:
clause_bank = json.load(f)
# πŸ”‘ Extract clause labels and text
clause_labels = list(clause_bank.keys())
clause_texts = list(clause_bank.values())
clause_embeddings = model.encode(clause_texts, convert_to_tensor=True)
def suggest_fallback(input_clause: str, top_k: int = 3):
"""
Suggest top-k fallback clauses based on semantic similarity.
Args:
input_clause (str): The clause to analyze.
top_k (int): Number of fallback suggestions to return.
Returns:
str: Formatted fallback suggestions.
"""
if not input_clause or len(input_clause.strip()) == 0:
return "⚠️ No input clause provided."
input_embedding = model.encode(input_clause, convert_to_tensor=True)
scores = util.cos_sim(input_embedding, clause_embeddings)[0]
top_indices = scores.topk(k=min(top_k, len(clause_labels))).indices.tolist()
results = []
for idx in top_indices:
label = clause_labels[idx]
suggestion = clause_texts[idx]
results.append(f"πŸ”Ή {label}:\n{suggestion}")
return "\n\n".join(results)