SANJAYV10's picture
Update app.py
06ba20f
raw
history blame
2.59 kB
from fastapi import FastAPI
from pydantic import BaseModel
import torch
import torch.nn as nn
import torch
from torchvision import transforms
from typing import Any, Type
import pydantic
import torch
class TensorSchema(pydantic.BaseModel):
shape: list[int]
dtype: str
requires_grad: bool
@classmethod
def __get_pydantic_core_schema__(cls: Type[Any]) -> pydantic.schema.Schema:
return pydantic.schema.Schema(
type="object",
properties={
"shape": pydantic.schema.Schema(type="array", items=pydantic.schema.Schema(type="integer")),
"dtype": pydantic.schema.Schema(type="string"),
"requires_grad": pydantic.schema.Schema(type="boolean"),
},
required=["shape", "dtype", "requires_grad"],
)
class TorchTensor(torch.Tensor):
@classmethod
def __get_pydantic_core_schema__(cls: Type[Any]) -> pydantic.schema.Schema:
return TensorSchema.__get_pydantic_core_schema__()
class Prediction(BaseModel):
prediction: torch.Tensor
app = FastAPI()
# Load the PyTorch model
model = torch.load("best_model-epoch=01-val_loss=3.00.ckpt")
# Define a function to preprocess the input
def preprocess_input(input):
"""Preprocess the input image for the PyTorch image classification model.
Args:
input: A PIL Image object.
Returns:
A PyTorch tensor representing the preprocessed image.
"""
# Resize the image to the expected size.
input = input.resize((224, 224))
# Convert the image to a PyTorch tensor.
input = torch.from_numpy(np.array(input)).float()
# Normalize the image.
input = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(input)
# Return the preprocessed image.
return input
@app.post("/predict", response_model=Prediction)
async def predict_endpoint(input: fastapi.File):
"""Predict the output of the PyTorch image classification model.
Args:
input: A file containing the input image.
Returns:
A JSON object containing the prediction.
"""
# Load the image.
image = await input.read()
image = Image.open(BytesIO(image))
# Preprocess the image.
image = preprocess_input(image)
# Make a prediction.
prediction = model(image.unsqueeze(0))
# Get the top predicted class.
predicted_class = prediction.argmax(1)
# Return the prediction.
return Prediction(prediction=predicted_class)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)