Spaces:
Runtime error
Runtime error
Johannes
commited on
Commit
•
54c5ead
1
Parent(s):
a5f6978
test transformers sam
Browse files- app.py +28 -17
- requirements.txt +1 -1
app.py
CHANGED
@@ -17,14 +17,16 @@ import colorsys
|
|
17 |
|
18 |
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
19 |
model_type = "vit_h"
|
20 |
-
device = "cpu"
|
21 |
|
22 |
|
23 |
-
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
24 |
-
sam.to(device=device)
|
25 |
-
predictor = SamPredictor(sam)
|
26 |
-
mask_generator = SamAutomaticMaskGenerator(sam)
|
27 |
|
|
|
|
|
28 |
|
29 |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
30 |
"SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32
|
@@ -70,18 +72,27 @@ with gr.Blocks() as demo:
|
|
70 |
clear = gr.Button("Clear")
|
71 |
|
72 |
def generate_mask(image):
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# clear torch cache
|
83 |
-
torch.cuda.empty_cache()
|
84 |
-
mask = Image.fromarray(mask[0, :, :])
|
85 |
# segs = mask_generator.generate(image)
|
86 |
# boolean_masks = [s["segmentation"] for s in segs]
|
87 |
# finseg = np.zeros(
|
@@ -99,9 +110,9 @@ with gr.Blocks() as demo:
|
|
99 |
# rgb_mask[:, :, 2] = boolean_mask * rgb[2]
|
100 |
# finseg += rgb_mask
|
101 |
|
102 |
-
torch.cuda.empty_cache()
|
103 |
|
104 |
-
return mask
|
105 |
|
106 |
def infer(
|
107 |
image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
|
|
|
17 |
|
18 |
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
19 |
model_type = "vit_h"
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
|
22 |
|
23 |
+
#sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
24 |
+
#sam.to(device=device)
|
25 |
+
#predictor = SamPredictor(sam)
|
26 |
+
#mask_generator = SamAutomaticMaskGenerator(sam)
|
27 |
|
28 |
+
generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256)
|
29 |
+
#image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
|
30 |
|
31 |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
32 |
"SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32
|
|
|
72 |
clear = gr.Button("Clear")
|
73 |
|
74 |
def generate_mask(image):
|
75 |
+
outputs = generator(image, points_per_batch=256)
|
76 |
+
|
77 |
+
for mask in outputs["masks"]:
|
78 |
+
color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0)
|
79 |
+
h, w = mask.shape[-2:]
|
80 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
81 |
+
|
82 |
+
return mask_image
|
83 |
+
|
84 |
+
# predictor.set_image(image)
|
85 |
+
# input_point = np.array([120, 21])
|
86 |
+
# input_label = np.ones(input_point.shape[0])
|
87 |
+
# mask, _, _ = predictor.predict(
|
88 |
+
# point_coords=input_point,
|
89 |
+
# point_labels=input_label,
|
90 |
+
# multimask_output=False,
|
91 |
+
# )
|
92 |
|
93 |
# clear torch cache
|
94 |
+
# torch.cuda.empty_cache()
|
95 |
+
# mask = Image.fromarray(mask[0, :, :])
|
96 |
# segs = mask_generator.generate(image)
|
97 |
# boolean_masks = [s["segmentation"] for s in segs]
|
98 |
# finseg = np.zeros(
|
|
|
110 |
# rgb_mask[:, :, 2] = boolean_mask * rgb[2]
|
111 |
# finseg += rgb_mask
|
112 |
|
113 |
+
# torch.cuda.empty_cache()
|
114 |
|
115 |
+
# return mask
|
116 |
|
117 |
def infer(
|
118 |
image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
torch
|
2 |
torchvision
|
3 |
git+https://github.com/facebookresearch/segment-anything.git
|
4 |
-
transformers
|
5 |
flax
|
6 |
jax[cuda11_pip]
|
7 |
-f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
|
|
|
1 |
torch
|
2 |
torchvision
|
3 |
git+https://github.com/facebookresearch/segment-anything.git
|
4 |
+
git+https://github.com/huggingface/transformers@main
|
5 |
flax
|
6 |
jax[cuda11_pip]
|
7 |
-f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
|