Johannes
update description
268ddb9
raw
history blame
6.31 kB
import gradio as gr
import numpy as np
import torch
import jax
import jax.numpy as jnp
from diffusers import StableDiffusionInpaintPipeline
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
from diffusers import (
UniPCMultistepScheduler,
FlaxStableDiffusionControlNetPipeline,
FlaxControlNetModel,
)
import colorsys
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cpu"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
revision="flax",
dtype=jnp.bfloat16,
)
params["controlnet"] = controlnet_params
p_params = replicate(params)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
with gr.Blocks() as demo:
gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation")
gr.Markdown(
"""
### About
We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images.
For the training data creation we used the [Wildlife Animals Images](https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images) dataset.
We created segmentation masks with the help of [Grounded SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) where we used the animals names
as input prompts for detection and more accurate segmentation.
### How To Use
"""
)
with gr.Row():
input_img = gr.Image(label="Input")
mask_img = gr.Image(label="Mask", interactive=False)
output_img = gr.Image(label="Output", interactive=False)
with gr.Row():
prompt_text = gr.Textbox(lines=1, label="Prompt")
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")
with gr.Row():
submit = gr.Button("Submit")
clear = gr.Button("Clear")
def generate_mask(image, evt: gr.SelectData):
predictor.set_image(image)
input_point = np.array([120, 21])
input_label = np.ones(input_point.shape[0])
mask, _, _ = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
# clear torch cache
torch.cuda.empty_cache()
mask = Image.fromarray(mask[0, :, :])
segs = mask_generator.generate(image)
boolean_masks = [s["segmentation"] for s in segs]
finseg = np.zeros(
(boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8
)
# Loop over the boolean masks and assign a unique color to each class
for class_id, boolean_mask in enumerate(boolean_masks):
hue = class_id * 1.0 / len(boolean_masks)
rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1))
rgb_mask = np.zeros(
(boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8
)
rgb_mask[:, :, 0] = boolean_mask * rgb[0]
rgb_mask[:, :, 1] = boolean_mask * rgb[1]
rgb_mask[:, :, 2] = boolean_mask * rgb[2]
finseg += rgb_mask
torch.cuda.empty_cache()
return mask, finseg
def infer(
image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
):
try:
rng = jax.random.PRNGKey(int(seed))
num_inference_steps = int(num_inference_steps)
image = Image.fromarray(image, mode="RGB")
num_samples = max(jax.device_count(), int(num_samples))
p_rng = jax.random.split(rng, jax.device_count())
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs(
[negative_prompts] * num_samples
)
processed_image = pipe.prepare_image_inputs([image] * num_samples)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=p_rng,
num_inference_steps=num_inference_steps,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
del negative_prompt_ids
del processed_image
del prompt_ids
output = output.reshape((num_samples,) + output.shape[-3:])
final_image = [np.array(x * 255, dtype=np.uint8) for x in output]
print(output.shape)
del output
except Exception as e:
print("Error: " + str(e))
final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
finally:
gc.collect()
return final_image
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg):
img = None
mask = None
seg = None
out = None
prompt = ""
neg_prompt = ""
bg = False
return img, mask, seg, out, prompt, neg_prompt, bg
input_img.change(
generate_mask,
inputs=[input_img],
outputs=[mask_img],
)
submit.click(
infer,
inputs=[mask_img, prompt_text, negative_prompt_text],
outputs=[output_img],
)
clear.click(
_clear,
inputs=[
input_img,
mask_img,
output_img,
prompt_text,
negative_prompt_text,
],
outputs=[
input_img,
mask_img,
output_img,
prompt_text,
negative_prompt_text,
],
)
if __name__ == "__main__":
demo.queue()
demo.launch()