Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,418 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import pandas as pd
|
3 |
-
import panel as pn
|
4 |
-
import xarray as xr
|
5 |
-
import param
|
6 |
-
|
7 |
-
import hvplot.xarray
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import cartopy.crs as ccrs
|
10 |
-
import cartopy.feature as cfeature
|
11 |
-
from datatree import open_datatree
|
12 |
-
|
13 |
-
|
14 |
-
def get_range(da):
|
15 |
-
return ( int(da.min().round() - 1), int(da.max().round() + 1),)
|
16 |
-
|
17 |
-
@pn.cache(max_items=32,policy='LRU',per_session=True)
|
18 |
-
def load_csv(path='./data/zarr_table.csv'):
|
19 |
-
df = pd.read_csv(path,index_col=None)
|
20 |
-
return df.sort_values(by="year") #inplace=True)
|
21 |
-
|
22 |
-
@pn.cache(max_items=4,policy='LRU',per_session=True)
|
23 |
-
def load_bathymetry(path='./data/bathy6min.nc'):
|
24 |
-
return xr.open_dataset(path, decode_times=False, use_cftime=True)
|
25 |
-
|
26 |
-
@pn.cache(max_items=16,policy='LRU',per_session=True)
|
27 |
-
def load_zarr(path='./data/1H_file.zarr'):
|
28 |
-
return open_datatree(path, engine='zarr')
|
29 |
-
|
30 |
-
def load_file(tree,selected_file):
|
31 |
-
return tree[selected_file+"/"].ds
|
32 |
-
|
33 |
-
def filter_df(sorted_df,selected_file):
|
34 |
-
# include user_interface_url here
|
35 |
-
dataframe = sorted_df[sorted_df["file_name"] == selected_file].drop(
|
36 |
-
columns=[
|
37 |
-
"file_name",
|
38 |
-
"title",
|
39 |
-
"Conventions",
|
40 |
-
"featureType",
|
41 |
-
"date_update",
|
42 |
-
"ADCP_beam_angle",
|
43 |
-
"ADCP_ship_angle",
|
44 |
-
"middle_bin1_depth",
|
45 |
-
"heading_corr",
|
46 |
-
"pitch_corr",
|
47 |
-
"ampli_corr",
|
48 |
-
"pitch_roll_used",
|
49 |
-
"date_creation",
|
50 |
-
"ADCP_type",
|
51 |
-
"data_type",
|
52 |
-
]
|
53 |
-
)
|
54 |
-
# include LOCAL_CDI_ID here
|
55 |
-
dataframe2 = sorted_df[sorted_df["file_name"] == selected_file].drop(
|
56 |
-
columns=[
|
57 |
-
"file_name",
|
58 |
-
"date_start",
|
59 |
-
"date_end",
|
60 |
-
"ADCP_frequency(kHz)",
|
61 |
-
"bin_length(meter)",
|
62 |
-
"year",
|
63 |
-
]
|
64 |
-
)
|
65 |
-
return dataframe.transpose(), dataframe2.transpose()
|
66 |
-
|
67 |
-
def filter_data(ds,longitude_range,latitude_range):
|
68 |
-
return ds.where(
|
69 |
-
(ds.LONGITUDE >= longitude_range[0])
|
70 |
-
& (ds.LONGITUDE <= longitude_range[1])
|
71 |
-
& (ds.LATITUDE >= latitude_range[0])
|
72 |
-
& (ds.LATITUDE <= latitude_range[1]),
|
73 |
-
drop=True,
|
74 |
-
)
|
75 |
-
|
76 |
-
|
77 |
-
def quiver_depth_filtered(ax, ds, depth_range, scale_factor, color="blue"):
|
78 |
-
"""
|
79 |
-
Plot quiver plot of mean current vectors filtered by depth.
|
80 |
-
|
81 |
-
Parameters:
|
82 |
-
ax (matplotlib.axes.Axes): The matplotlib axes object to plot on.
|
83 |
-
ds (xarray.Dataset): The dataset containing the current data.
|
84 |
-
depth_range (tuple): Tuple containing the minimum and maximum depth values for filtering.
|
85 |
-
scale_factor (float): Scaling factor for the magnitude of the current vectors.
|
86 |
-
color (str, optional): Color of the quiver arrows. Defaults to "blue".
|
87 |
-
|
88 |
-
Returns:
|
89 |
-
matplotlib.quiver.Quiver: The quiver plot object.
|
90 |
-
"""
|
91 |
-
# Filter data based on depth range
|
92 |
-
ds = ds.sel( PROFZ=slice(depth_range[1],depth_range[0]))
|
93 |
-
|
94 |
-
# Calculate mean current vectors within the selected depth range
|
95 |
-
u_mean = ds.UCUR.mean(dim="PROFZ", skipna=True)
|
96 |
-
v_mean = ds.VCUR.mean(dim="PROFZ", skipna=True)
|
97 |
-
|
98 |
-
# Extract longitude and latitude coordinates
|
99 |
-
lon = ds.coords["LONGITUDE"].values
|
100 |
-
lat = ds.coords["LATITUDE"].values
|
101 |
-
|
102 |
-
# Plot quiver plot
|
103 |
-
return ax.quiver(
|
104 |
-
lon,
|
105 |
-
lat,
|
106 |
-
u_mean * scale_factor,
|
107 |
-
v_mean * scale_factor,
|
108 |
-
color=color,
|
109 |
-
scale=2,
|
110 |
-
width=0.001,
|
111 |
-
headwidth=3,
|
112 |
-
transform=ccrs.PlateCarree(),
|
113 |
-
)
|
114 |
-
|
115 |
-
def bathy_uship_vship_bottom_depth(ds):
|
116 |
-
"""
|
117 |
-
Plot maximum values of bathymetry, USHIP, VSHIP, and bottom depth over time.
|
118 |
-
|
119 |
-
Parameters:
|
120 |
-
ds (xarray.Dataset): Dataset containing the required variables.
|
121 |
-
|
122 |
-
Returns:
|
123 |
-
list: List of hvplot objects representing the plots of maximum values of bathymetry,
|
124 |
-
USHIP, VSHIP, and bottom depth over time.
|
125 |
-
"""
|
126 |
-
return [
|
127 |
-
ds["BATHY"].max(dim="PROFZ").hvplot(x="TIME", width=400, height=200),
|
128 |
-
ds["USHIP"].max(dim="PROFZ").hvplot(x="TIME", width=400, height=200),
|
129 |
-
ds["VSHIP"].max(dim="PROFZ").hvplot(x="TIME", width=400, height=200),
|
130 |
-
ds["BOTTOM_DEPTH"].max(dim="PROFZ").hvplot(x="TIME", width=400, height=200),
|
131 |
-
]
|
132 |
-
|
133 |
-
|
134 |
-
def corsen_data(ds, sample):
|
135 |
-
"""
|
136 |
-
Downsample the dataset `ds` based on the number of vectors specified by `sample`.
|
137 |
-
|
138 |
-
Parameters:
|
139 |
-
ds (xarray.Dataset): Dataset to be downsampled.
|
140 |
-
sample (int): Number of vectors used for downsampling.
|
141 |
-
|
142 |
-
Returns:
|
143 |
-
xarray.Dataset: Downsampled dataset.
|
144 |
-
"""
|
145 |
-
coords = ["LATITUDE", "LONGITUDE"]
|
146 |
-
corsen = max(1, ds.TIME.size // sample)
|
147 |
-
return (
|
148 |
-
ds.reset_coords(coords)
|
149 |
-
.coarsen({"TIME": corsen}, boundary="trim")
|
150 |
-
.mean()
|
151 |
-
.set_coords(coords)
|
152 |
-
)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
def vectors_plot(ds, bathy, longitude_range, latitude_range ,
|
157 |
-
depth_range, depth_2_range, depth_3_range,
|
158 |
-
scale_factor, sample,
|
159 |
-
depth_2_checkbox=False, depth_3_checkbox=False, bathy_checkbox=False):
|
160 |
-
"""
|
161 |
-
Plot vectors filtered by depth on a map with specified features.
|
162 |
-
|
163 |
-
Parameters:
|
164 |
-
ds (xarray.Dataset): Dataset containing current data.
|
165 |
-
bathy (xarray.Dataset): Dataset containing bathymetry data.
|
166 |
-
longitude_range (tuple): Tuple containing the minimum and maximum longitude values.
|
167 |
-
latitude_range (tuple): Tuple containing the minimum and maximum latitude values.
|
168 |
-
depth_range (tuple): Tuple containing the minimum and maximum depth values for filtering.
|
169 |
-
depth_2_range (tuple): Tuple containing the minimum and maximum depth values for filtering depth 2.
|
170 |
-
depth_3_range (tuple): Tuple containing the minimum and maximum depth values for filtering depth 3.
|
171 |
-
scale_factor (float): Scaling factor for the magnitude of the current vectors.
|
172 |
-
sample (int): Number of vectors used for downsampling.
|
173 |
-
depth_2_checkbox (bool, optional): Whether to plot vectors for depth 2. Defaults to False.
|
174 |
-
depth_3_checkbox (bool, optional): Whether to plot vectors for depth 3. Defaults to False.
|
175 |
-
bathy_checkbox (bool, optional): Whether to plot bathymetry. Defaults to False.
|
176 |
-
|
177 |
-
Returns:
|
178 |
-
matplotlib.figure.Figure: The generated plot.
|
179 |
-
"""
|
180 |
-
# Create subplot with Mercator projection
|
181 |
-
fig, ax = plt.subplots(figsize=(5, 4), subplot_kw={"projection": ccrs.Mercator()})
|
182 |
-
|
183 |
-
# Apply data downsampling
|
184 |
-
ds = corsen_data(ds, sample)
|
185 |
-
|
186 |
-
# Plot vectors filtered by depth
|
187 |
-
quiver_depth_filtered(ax, ds, depth_range, scale_factor, color="blue")
|
188 |
-
if depth_2_checkbox:
|
189 |
-
quiver_depth_filtered(ax, ds, depth_2_range, scale_factor, color="green")
|
190 |
-
if depth_3_checkbox:
|
191 |
-
quiver_depth_filtered(ax, ds, depth_3_range, scale_factor, color="red")
|
192 |
-
|
193 |
-
# Add map features
|
194 |
-
ax.add_feature(cfeature.COASTLINE)
|
195 |
-
ax.add_feature(cfeature.BORDERS, linestyle=":")
|
196 |
-
ax.add_feature(cfeature.LAND, color="lightgray")
|
197 |
-
|
198 |
-
# Plot bathymetry if provided
|
199 |
-
if bathy_checkbox:
|
200 |
-
contour_levels = [-1000]
|
201 |
-
ax.contour(bathy.longitude, bathy.latitude, bathy.z,
|
202 |
-
levels=contour_levels, colors="black", transform=ccrs.PlateCarree())
|
203 |
-
|
204 |
-
# Set extent and add gridlines
|
205 |
-
ax.set_extent([longitude_range[0], longitude_range[1],
|
206 |
-
latitude_range[0], latitude_range[1]])
|
207 |
-
ax.gridlines(draw_labels=True)
|
208 |
-
|
209 |
-
# Set labels and close plot
|
210 |
-
plt.ylabel("Latitude", fontsize=15, labelpad=35)
|
211 |
-
plt.xlabel("Longitude", fontsize=15, labelpad=20)
|
212 |
-
#https://panel.holoviz.org/reference/panes/Matplotlib.html#using-the-matplotlib-pyplot-interface
|
213 |
-
plt.close(fig)
|
214 |
-
return fig
|
215 |
-
|
216 |
-
class SADCP_Viewer(param.Parameterized):
|
217 |
-
"""
|
218 |
-
A parameterized class for viewing SADCP data.
|
219 |
-
|
220 |
-
This class provides widgets for selecting data parameters, updating data based on selections,
|
221 |
-
and generating plots to visualize the SADCP data.
|
222 |
-
|
223 |
-
Available functions:
|
224 |
-
- update_name_options: Update dropdown options and slider ranges based on selected years and file.
|
225 |
-
- update_plots: Update plots based on selected data and parameters.
|
226 |
-
"""
|
227 |
-
|
228 |
-
# Load data and initialize widgets
|
229 |
-
df = load_csv()
|
230 |
-
bathy = load_bathymetry()
|
231 |
-
tree=load_zarr()
|
232 |
-
file_names = df["file_name"].tolist()
|
233 |
-
years = sorted(df["year"].unique())
|
234 |
-
|
235 |
-
# Widgets for selecting data parameters
|
236 |
-
year_slider = pn.widgets.IntRangeSlider(name="Year Range", start=df["year"].min(), end=df["year"].max())
|
237 |
-
file_dropdown = pn.widgets.Select(name="File Selector")
|
238 |
-
longitude_slider = pn.widgets.RangeSlider(name="Longitude Range", start=-180, end=180, step=1)
|
239 |
-
latitude_slider = pn.widgets.RangeSlider(name="Latitude Range", start=-90, end=90, step=1)
|
240 |
-
depth_range_slider = pn.widgets.IntRangeSlider(start=100, end=300, value=(100, 300), step=1, name="Depth Range")
|
241 |
-
depth_2_checkbox = pn.widgets.Checkbox(value=False, name="Depth 2 Checkbox")
|
242 |
-
depth_3_checkbox = pn.widgets.Checkbox(value=False, name="Depth 3 Checkbox")
|
243 |
-
depth_2_range_slider = pn.widgets.IntRangeSlider(start=100, end=300, value=(100, 300), step=1, name="Depth 2 Range")
|
244 |
-
depth_3_range_slider = pn.widgets.IntRangeSlider(start=100, end=300, value=(100, 300), step=1, name="Depth 3 Range")
|
245 |
-
num_vectors_slider = pn.widgets.IntSlider(start=40, end=800, step=1, value=100, name="Number of Vectors")
|
246 |
-
scale_factor_slider = pn.widgets.FloatSlider(start=0.1, end=1, step=0.1, value=0.5, name="Scale Factor")
|
247 |
-
bathy_checkbox = pn.widgets.Checkbox(value=False, name="Bathy Checkbox")
|
248 |
-
|
249 |
-
|
250 |
-
data_table = pn.widgets.Tabulator(width=400, height=200)
|
251 |
-
metadata_table = pn.widgets.Tabulator(width=600, height=800)
|
252 |
-
# Download button is not working : TODO
|
253 |
-
download_button = pn.widgets.Button(name="Download", button_type="primary")
|
254 |
-
|
255 |
-
def __init__(self, **params):
|
256 |
-
"""
|
257 |
-
Initialize the SADCP_Viewer class.
|
258 |
-
|
259 |
-
Parameters:
|
260 |
-
**params: Additional parameters to be passed to the superclass.
|
261 |
-
"""
|
262 |
-
|
263 |
-
super(SADCP_Viewer, self).__init__(**params)
|
264 |
-
self.file_dropdown.objects = self.file_names
|
265 |
-
self.file_dropdown.value = (
|
266 |
-
self.file_dropdown.objects[0] if self.file_dropdown.objects else None
|
267 |
-
)
|
268 |
-
self.update_name_options()
|
269 |
-
|
270 |
-
@param.depends("year_slider.value", "file_dropdown.value", watch=True)
|
271 |
-
def update_name_options(self):
|
272 |
-
"""
|
273 |
-
Update dropdown options and slider ranges based on selected years and file.
|
274 |
-
|
275 |
-
This function updates the dropdown options and slider ranges based on the selected years
|
276 |
-
and file. It also loads the selected file's data and adjusts slider ranges accordingly.
|
277 |
-
|
278 |
-
"""
|
279 |
-
# Extract selected start and end years
|
280 |
-
start_year, end_year = self.year_slider.value
|
281 |
-
|
282 |
-
# Filter DataFrame based on selected years and sort by year
|
283 |
-
mask = (self.df["year"] >= start_year) & (self.df["year"] <= end_year)
|
284 |
-
sorted_df = self.df[mask].sort_values(by="year")
|
285 |
-
|
286 |
-
# Get unique file names
|
287 |
-
files = sorted_df["file_name"].unique().tolist()
|
288 |
-
|
289 |
-
# Update file dropdown options
|
290 |
-
self.file_dropdown.options = files
|
291 |
-
|
292 |
-
if files:
|
293 |
-
selected_file = self.file_dropdown.value
|
294 |
-
|
295 |
-
# Set default selected file if not selected or not in options
|
296 |
-
if not selected_file or selected_file not in files:
|
297 |
-
selected_file = files[0]
|
298 |
-
self.file_dropdown.value = selected_file
|
299 |
-
|
300 |
-
# Update data table and metadata table based on selected file
|
301 |
-
self.data_table.value, self.metadata_table.value = filter_df(sorted_df, selected_file)
|
302 |
-
|
303 |
-
# Load selected file's data
|
304 |
-
self.ds = load_file(self.tree,selected_file)
|
305 |
-
|
306 |
-
# Update slider ranges for longitude, latitude, and depth
|
307 |
-
for slider, coord in zip([self.longitude_slider, self.latitude_slider, self.depth_range_slider,
|
308 |
-
self.depth_2_range_slider, self.depth_3_range_slider],
|
309 |
-
[self.ds.LONGITUDE, self.ds.LATITUDE, self.ds.PROFZ,self.ds.PROFZ,self.ds.PROFZ]):
|
310 |
-
coord_range = get_range(coord)
|
311 |
-
slider.start, slider.end, slider.value = coord_range[0], coord_range[1], coord_range
|
312 |
-
|
313 |
-
|
314 |
-
# Close dataset to free up resources
|
315 |
-
# self.ds.close()
|
316 |
-
|
317 |
-
@param.depends(
|
318 |
-
"year_slider.value",
|
319 |
-
"file_dropdown.value",
|
320 |
-
"depth_range_slider.value",
|
321 |
-
"depth_2_checkbox.value",
|
322 |
-
"depth_3_checkbox.value",
|
323 |
-
"depth_2_range_slider.value",
|
324 |
-
"depth_3_range_slider.value",
|
325 |
-
"longitude_slider.value",
|
326 |
-
"latitude_slider.value",
|
327 |
-
"num_vectors_slider.value",
|
328 |
-
"scale_factor_slider.value",
|
329 |
-
"bathy_checkbox.value",
|
330 |
-
watch=False,)
|
331 |
-
def update_plots(self):
|
332 |
-
"""
|
333 |
-
This function updates the plots based on the selected data and parameters.
|
334 |
-
|
335 |
-
The function filters the data, generates additional plots, and updates the main vector plot based on the selected parameters.
|
336 |
-
|
337 |
-
Returns:
|
338 |
-
pn.Row: A Panel row containing the updated map plot and additional plots.
|
339 |
-
|
340 |
-
"""
|
341 |
-
# Filter the data
|
342 |
-
self.ds_filtered = filter_data(self.ds,self.longitude_slider.value,self.latitude_slider.value)
|
343 |
-
|
344 |
-
# Prepare the plots shown in left
|
345 |
-
# Update vector plots
|
346 |
-
vector_plot = vectors_plot(self.ds_filtered, self.bathy,
|
347 |
-
self.longitude_slider.value, self.latitude_slider.value,
|
348 |
-
self.depth_range_slider.value, self.depth_2_range_slider.value, self.depth_3_range_slider.value,
|
349 |
-
self.scale_factor_slider.value,self.num_vectors_slider.value,
|
350 |
-
depth_2_checkbox= self.depth_2_checkbox.value,
|
351 |
-
depth_3_checkbox= self.depth_3_checkbox.value,
|
352 |
-
bathy_checkbox=self.bathy_checkbox.value,
|
353 |
-
)
|
354 |
-
|
355 |
-
|
356 |
-
# Generate plots which will be plotted on the left row.
|
357 |
-
self.plot_left = pn.Column(
|
358 |
-
# Here adjust the style option later TODO
|
359 |
-
# https://panel.holoviz.org/how_to/styling/matplotlib.html
|
360 |
-
pn.pane.Matplotlib(vector_plot, dpi=144),
|
361 |
-
# Add here the hvplot block of contour TODO
|
362 |
-
sizing_mode="stretch_both")
|
363 |
-
|
364 |
-
# Generate additional plots which will be plotted on the right row.
|
365 |
-
other_plots = bathy_uship_vship_bottom_depth(self.ds_filtered)
|
366 |
-
self.plot_right = pn.Column(
|
367 |
-
*(pn.pane.HoloViews(plot, width=400, height=200) for plot in other_plots),
|
368 |
-
sizing_mode="stretch_width"
|
369 |
-
)
|
370 |
-
|
371 |
-
# Return a Panel row containing the updated map plot and additional plots
|
372 |
-
return pn.Row(self.plot_left, self.plot_right, sizing_mode="stretch_both")
|
373 |
-
|
374 |
-
|
375 |
-
pn.extension("tabulator")
|
376 |
-
pn.config.theme = 'dark'
|
377 |
-
|
378 |
-
explorer = SADCP_Viewer()
|
379 |
-
# Instantiate the SADCP_Viewer class and create a template
|
380 |
-
tabs = pn.Tabs(
|
381 |
-
("Plots", pn.Column(explorer.update_plots)),
|
382 |
-
(
|
383 |
-
"Metadata",
|
384 |
-
pn.Column(
|
385 |
-
explorer.metadata_table, explorer.download_button, height=500, margin=10
|
386 |
-
),
|
387 |
-
),
|
388 |
-
)
|
389 |
-
|
390 |
-
sidebar = [
|
391 |
-
pn.panel('./EuroGO-SHIP_logo_wide_tagline_1.2.png',width=300 ),
|
392 |
-
"""This application, developed in the frame of Euro Go Shop, helps to interactively visualise and download ship ADCP data.""",
|
393 |
-
explorer.year_slider,
|
394 |
-
explorer.file_dropdown,
|
395 |
-
explorer.longitude_slider,
|
396 |
-
explorer.latitude_slider,
|
397 |
-
explorer.bathy_checkbox,
|
398 |
-
explorer.depth_range_slider,
|
399 |
-
explorer.depth_2_checkbox,
|
400 |
-
explorer.depth_3_checkbox,
|
401 |
-
explorer.depth_2_range_slider,
|
402 |
-
explorer.depth_3_range_slider,
|
403 |
-
explorer.num_vectors_slider,
|
404 |
-
explorer.scale_factor_slider,
|
405 |
-
explorer.data_table,
|
406 |
-
"""You can consult detailed information on this data in the metadata tab shown on the right.
|
407 |
-
To download full dataset, please go to https://cdi.seadatanet.org/search
|
408 |
-
and search with LOCAL_CDI_ID indicated above.""",
|
409 |
-
#pn.panel('https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png', ),
|
410 |
-
#width=10)
|
411 |
-
]
|
412 |
-
|
413 |
-
template = pn.template.FastListTemplate(
|
414 |
-
title="SADCP data Viewer", logo='https://avatars.githubusercontent.com/u/123177533?s=200&v=4',
|
415 |
-
sidebar=sidebar, main=[tabs]
|
416 |
-
|
417 |
-
)
|
418 |
-
template.servable()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|