Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import torch | |
def app(): # Инкапсулирующая функция | |
st.title("GPT-2 Generator") | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model_path = "zhvanetsky_model" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_path) | |
model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE) | |
def generate_text(input_text, num_beams, temperature, max_length, top_p): | |
model.eval() | |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(DEVICE) | |
with torch.no_grad(): | |
out = model.generate(input_ids, | |
do_sample=True, | |
num_beams=num_beams, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=500, | |
max_length=max_length, | |
no_repeat_ngram_size=3, | |
num_return_sequences=3, | |
) | |
return tokenizer.decode(out[0], skip_special_tokens=True) | |
user_input = st.text_area("Input Text", "Ладно Павел, спасибо за поддержку!") | |
# Add sliders or input boxes for model parameters | |
num_beams = st.slider("Number of Beams", min_value=1, max_value=20, value=10) | |
temperature = st.slider("Temperature", min_value=0.1, max_value=3.0, value=1.0, step=0.1) | |
max_length = st.number_input("Max Length", min_value=10, max_value=300, value=100) | |
top_p = st.slider("Top P", min_value=0.1, max_value=1.0, value=0.85, step=0.05) | |
if st.button("Generate"): | |
generated_output = generate_text(user_input, num_beams, temperature, max_length, top_p) | |
st.text_area("Generated Text", generated_output) | |