nlp-lstm-team / toxic.py
Rzhishchev's picture
Update toxic.py
aadb1dc
raw
history blame
1.37 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
def app():
st.title('Toxic Comment Detector')
st.write('This is the toxic comment classifier page.')
model_checkpoint = 'cointegrated/rubert-tiny-toxicity'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
if torch.cuda.is_available():
model.cuda()
def text2toxicity(text, aggregate=True):
""" Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)"""
with torch.no_grad():
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()
if isinstance(text, str):
proba = proba[0]
if aggregate:
return 1 - proba.T[0] * (1 - proba.T[-1])
return proba
user_input = st.text_area("Enter text to check for toxicity:", "Собака сутулая")
if st.button("Analyze"):
toxicity_score = text2toxicity(user_input, True)
st.write(f"Toxicity Score: {toxicity_score:.4f}")
if toxicity_score > 0.5:
st.write("Warning: The text seems to be toxic!")