Mast3r / app.py
Ryukijano's picture
Cooked mast3r demo
75adee0 verified
import spaces
import os
import sys
import os.path as path
import torch
import tempfile
import gradio
import shutil
import math
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa
MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) # noqa
sys.path.insert(0, MASt3R_REPO_PATH) # noqa
from mast3r.demo import get_reconstructed_scene
from mast3r.model import AsymmetricMASt3R
from mast3r.utils.misc import hash_md5
import mast3r.utils.path_to_dust3r # noqa
from dust3r.demo import set_print_with_timestamp
import matplotlib.pyplot as pl
pl.ion()
# for gpu >= Ampere and pytorch >= 1.12
torch.backends.cuda.matmul.allow_tf32 = True
batch_size = 1
set_print_with_timestamp()
weights_path = "naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = AsymmetricMASt3R.from_pretrained(weights_path).to(device)
chkpt_tag = hash_md5(weights_path)
tmpdirname = tempfile.mkdtemp(suffix='_mast3r_gradio_demo')
image_size = 512
silent = True
gradio_delete_cache = 7200
class FileState:
def __init__(self, outfile_name=None):
self.outfile_name = outfile_name
def __del__(self):
if self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
self.outfile_name = None
@spaces.GPU(duration=180)
def local_get_reconstructed_scene(filelist, min_conf_thr, matching_conf_thr,
as_pointcloud, cam_size,
shared_intrinsics, **kw):
lr1 = 0.07
niter1 = 500
lr2 = 0.014
niter2 = 200
optim_level = 'refine'
mask_sky, clean_depth, transparent_cams = False, True, False
if len(filelist) < 5:
scenegraph_type = 'complete'
winsize = 1
else:
scenegraph_type = 'logwin'
half_size = math.ceil((len(filelist) - 1) / 2)
max_winsize = max(1, math.ceil(math.log(half_size, 2)))
winsize = min(5, max_winsize)
refid = 0
win_cyclic = False
scene_state, outfile = get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, None,
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize,
win_cyclic, refid, TSDF_thresh=0, shared_intrinsics=shared_intrinsics, **kw)
filestate = FileState(scene_state.outfile_name)
scene_state.outfile_name = None
del scene_state
return filestate, outfile
def run_example(snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, filelist, **kw):
return local_get_reconstructed_scene(filelist, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics, **kw)
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "MASt3R Demo"
with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
filestate = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">3D Reconstruction with MASt3R</h2>')
gradio.HTML('<p>Upload one or multiple images (wait for them to be fully uploaded before hitting the run button). '
'We tested with up to 18 images before running into the allocation timeout - set at 3 minutes but your mileage may vary. '
'At the very bottom of this page, you will find an example. If you click on it, it will pull the 3D reconstruction from 7 images of the small Naver Labs Europe tower from cache. '
'If you want to try larger image collections, you can find the more complete version of this demo that you can run locally '
'and more details about the method at <a href="https://github.com/naver/mast3r">github.com/naver/mast3r</a>. '
'The checkpoint used in this demo is available at <a href="https://huggingface.co/naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric">huggingface.co/naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric</a>.</p>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
snapshot = gradio.Image(None, visible=False)
with gradio.Row():
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=2.,
minimum=0., maximum=30., step=0.1,
info="Before Fallback to Regr3D!")
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
info="Only optimize one set of intrinsics for all views")
run_btn = gradio.Button("Run")
outmodel = gradio.Model3D()
examples = gradio.Examples(
examples=[
[
os.path.join(HERE_PATH, 'mast3r/assets/NLE_tower/FF5599FD-768B-431A-AB83-BDA5FB44CB9D-83120-000041DADDE35483.jpg'),
0.0, 1.5, 0.2, True, False,
[os.path.join(HERE_PATH, 'mast3r/assets/NLE_tower/01D90321-69C8-439F-B0B0-E87E7634741C-83120-000041DAE419D7AE.jpg'),
os.path.join(
HERE_PATH, 'mast3r/assets/NLE_tower/1AD85EF5-B651-4291-A5C0-7BDB7D966384-83120-000041DADF639E09.jpg'),
os.path.join(
HERE_PATH, 'mast3r/assets/NLE_tower/28EDBB63-B9F9-42FB-AC86-4852A33ED71B-83120-000041DAF22407A1.jpg'),
os.path.join(
HERE_PATH, 'mast3r/assets/NLE_tower/91E9B685-7A7D-42D7-B933-23A800EE4129-83120-000041DAE12C8176.jpg'),
os.path.join(
HERE_PATH, 'mast3r/assets/NLE_tower/2679C386-1DC0-4443-81B5-93D7EDE4AB37-83120-000041DADB2EA917.jpg'),
os.path.join(
HERE_PATH, 'mast3r/assets/NLE_tower/CDBBD885-54C3-4EB4-9181-226059A60EE0-83120-000041DAE0C3D612.jpg'),
os.path.join(HERE_PATH, 'mast3r/assets/NLE_tower/FF5599FD-768B-431A-AB83-BDA5FB44CB9D-83120-000041DADDE35483.jpg')]
]
],
inputs=[snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, inputfiles],
outputs=[filestate, outmodel],
fn=run_example,
cache_examples="lazy",
)
# events
run_btn.click(fn=local_get_reconstructed_scene,
inputs=[inputfiles, min_conf_thr, matching_conf_thr,
as_pointcloud,
cam_size, shared_intrinsics],
outputs=[filestate, outmodel])
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
shutil.rmtree(tmpdirname)