Image-processor / app.py
Ryukijano's picture
Update app.py
c0583a3 verified
# app.py for Hugging Face Space: Connecting Meta Llama 3.2 Vision, Efficient Segmentation, and Diffusion Model
import gradio as gr
import spaces # Import the spaces module to use GPU-specific decorators
from transformers import VisionEncoderDecoderModel, AutoFeatureExtractor, pipeline
from diffusers import StableDiffusionPipeline
import torch
import os
from PIL import Image
# Set up Hugging Face token for private model access
hf_token = os.getenv("HF_TOKEN") # Fetch token from repository secrets
# Set up Meta Llama 3.2 Vision model (using Vision Encoder-Decoder model with token)
llama_vision_model_id = "nlpconnect/vit-gpt2-image-captioning"
vision_model = VisionEncoderDecoderModel.from_pretrained(
llama_vision_model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
token=hf_token # Updated to use 'token' instead of 'use_auth_token'
)
feature_extractor = AutoFeatureExtractor.from_pretrained(llama_vision_model_id, token=hf_token)
# Set up segmentation model using an efficient publicly available model
segment_model_id = "facebook/detr-resnet-50"
segment_pipe = pipeline(
"image-segmentation",
model=segment_model_id,
device=0, # Force usage of GPU
token=hf_token # Updated to use 'token'
)
# Set up Stable Diffusion Lite model
stable_diffusion_model_id = "runwayml/stable-diffusion-v1-5"
diffusion_pipe = StableDiffusionPipeline.from_pretrained(
stable_diffusion_model_id, torch_dtype=torch.float16, token=hf_token # Updated to use 'token'
)
diffusion_pipe = diffusion_pipe.to("cuda") # Force usage of GPU
# Use the GPU decorator for the function that needs GPU access
@spaces.GPU(duration=120) # Allocates GPU for a maximum of 120 seconds
def process_image(image):
# Step 1: Use Vision model for initial image understanding (captioning)
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(vision_model.device)
output_ids = vision_model.generate(pixel_values, max_length=50)
caption = vision_model.config.decoder.tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Step 2: Segment important parts of the image using DETR
segmented_result = segment_pipe(image=image)
segments = segmented_result
# Step 3: Modify segmented image using Diffusion model
# Here, we modify based on the caption result and segmented area
output_image = diffusion_pipe(prompt=f"Modify the {caption}", image=image).images[0]
return output_image
# Create Gradio interface
interface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs="image",
live=True, # Allow for dynamic updates if necessary
allow_flagging="never", # Disallow flagging to keep interactions light
title="Image Processor: Vision, Segmentation, and Modification",
description="Upload an image to generate a caption, segment important parts, and modify the image using Stable Diffusion."
)
# Launch the app
interface.launch()