Update app.py
Browse files
app.py
CHANGED
@@ -25,9 +25,11 @@ def main():
|
|
25 |
|
26 |
# Download model configuration and weights from Hugging Face Hub
|
27 |
print("[INFO] Downloading model configuration...")
|
28 |
-
model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
|
|
29 |
print("[INFO] Downloading model weights...")
|
30 |
-
model_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
|
|
31 |
|
32 |
# Load model configuration using OmegaConf
|
33 |
print("[INFO] Loading model configuration...")
|
@@ -59,7 +61,10 @@ def main():
|
|
59 |
def preprocess(image):
|
60 |
print("[DEBUG] Preprocessing image...")
|
61 |
# Resize the image to the desired height and width specified in the configuration
|
62 |
-
image = TTF.resize(
|
|
|
|
|
|
|
63 |
# Apply padding to the image
|
64 |
image = pad_border_fn(image)
|
65 |
print("[INFO] Image preprocessing complete.")
|
@@ -67,15 +72,16 @@ def main():
|
|
67 |
|
68 |
# Function to reconstruct the 3D model from the input image and export it as a PLY file
|
69 |
@spaces.GPU(duration=120) # Decorator to allocate a GPU for this function during execution
|
70 |
-
def reconstruct_and_export(image
|
|
|
|
|
|
|
71 |
print("[DEBUG] Starting reconstruction and export...")
|
72 |
# Convert the preprocessed image to a tensor and move it to the specified device
|
73 |
image = to_tensor(image).to(device).unsqueeze(0)
|
74 |
-
inputs = {
|
75 |
-
|
76 |
-
|
77 |
-
model.cfg.dataset.batch_size = batch_size
|
78 |
-
model.cfg.training.num_iterations = num_iterations
|
79 |
|
80 |
# Pass the image through the model to get the output
|
81 |
print("[INFO] Passing image through the model...")
|
@@ -83,11 +89,11 @@ def main():
|
|
83 |
|
84 |
# Export the reconstruction to a PLY file
|
85 |
print(f"[INFO] Saving output to {ply_out_path}...")
|
86 |
-
save_ply(outputs, ply_out_path, num_gauss=
|
87 |
print("[INFO] Reconstruction and export complete.")
|
88 |
|
89 |
return ply_out_path
|
90 |
-
|
91 |
# Path to save the output PLY file
|
92 |
ply_out_path = f'./mesh.ply'
|
93 |
|
@@ -101,15 +107,26 @@ def main():
|
|
101 |
|
102 |
# Create the Gradio user interface
|
103 |
with gr.Blocks(css=css) as demo:
|
104 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
105 |
with gr.Row(variant="panel"):
|
106 |
with gr.Column(scale=1):
|
107 |
with gr.Row():
|
108 |
# Input image component for the user to upload an image
|
109 |
-
input_image = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
with gr.Row():
|
111 |
# Button to trigger the generation process
|
112 |
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
|
|
113 |
with gr.Row(variant="panel"):
|
114 |
# Examples panel to provide sample images for users
|
115 |
gr.Examples(
|
@@ -126,18 +143,20 @@ def main():
|
|
126 |
label="Examples",
|
127 |
examples_per_page=20,
|
128 |
)
|
|
|
129 |
with gr.Row():
|
130 |
# Display the preprocessed image (after resizing and padding)
|
131 |
processed_image = gr.Image(label="Processed Image", interactive=False)
|
|
|
132 |
with gr.Column(scale=2):
|
133 |
with gr.Row():
|
134 |
with gr.Tab("Reconstruction"):
|
135 |
# 3D model viewer to display the reconstructed model
|
136 |
-
output_model = gr.Model3D(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
|
142 |
# Define the workflow for the Generate button
|
143 |
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
@@ -146,7 +165,7 @@ def main():
|
|
146 |
outputs=[processed_image],
|
147 |
).success(
|
148 |
fn=reconstruct_and_export,
|
149 |
-
inputs=[processed_image
|
150 |
outputs=[output_model],
|
151 |
)
|
152 |
|
|
|
25 |
|
26 |
# Download model configuration and weights from Hugging Face Hub
|
27 |
print("[INFO] Downloading model configuration...")
|
28 |
+
model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
29 |
+
filename="config_re10k_v1.yaml")
|
30 |
print("[INFO] Downloading model weights...")
|
31 |
+
model_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
32 |
+
filename="model_re10k_v1.pth")
|
33 |
|
34 |
# Load model configuration using OmegaConf
|
35 |
print("[INFO] Loading model configuration...")
|
|
|
61 |
def preprocess(image):
|
62 |
print("[DEBUG] Preprocessing image...")
|
63 |
# Resize the image to the desired height and width specified in the configuration
|
64 |
+
image = TTF.resize(
|
65 |
+
image, (cfg.dataset.height, cfg.dataset.width),
|
66 |
+
interpolation=TT.InterpolationMode.BICUBIC
|
67 |
+
)
|
68 |
# Apply padding to the image
|
69 |
image = pad_border_fn(image)
|
70 |
print("[INFO] Image preprocessing complete.")
|
|
|
72 |
|
73 |
# Function to reconstruct the 3D model from the input image and export it as a PLY file
|
74 |
@spaces.GPU(duration=120) # Decorator to allocate a GPU for this function during execution
|
75 |
+
def reconstruct_and_export(image):
|
76 |
+
"""
|
77 |
+
Passes image through model, outputs reconstruction in form of a dict of tensors.
|
78 |
+
"""
|
79 |
print("[DEBUG] Starting reconstruction and export...")
|
80 |
# Convert the preprocessed image to a tensor and move it to the specified device
|
81 |
image = to_tensor(image).to(device).unsqueeze(0)
|
82 |
+
inputs = {
|
83 |
+
("color_aug", 0, 0): image,
|
84 |
+
}
|
|
|
|
|
85 |
|
86 |
# Pass the image through the model to get the output
|
87 |
print("[INFO] Passing image through the model...")
|
|
|
89 |
|
90 |
# Export the reconstruction to a PLY file
|
91 |
print(f"[INFO] Saving output to {ply_out_path}...")
|
92 |
+
save_ply(outputs, ply_out_path, num_gauss=2)
|
93 |
print("[INFO] Reconstruction and export complete.")
|
94 |
|
95 |
return ply_out_path
|
96 |
+
|
97 |
# Path to save the output PLY file
|
98 |
ply_out_path = f'./mesh.ply'
|
99 |
|
|
|
107 |
|
108 |
# Create the Gradio user interface
|
109 |
with gr.Blocks(css=css) as demo:
|
110 |
+
gr.Markdown(
|
111 |
+
"""
|
112 |
+
# Flash3D
|
113 |
+
"""
|
114 |
+
)
|
115 |
with gr.Row(variant="panel"):
|
116 |
with gr.Column(scale=1):
|
117 |
with gr.Row():
|
118 |
# Input image component for the user to upload an image
|
119 |
+
input_image = gr.Image(
|
120 |
+
label="Input Image",
|
121 |
+
image_mode="RGBA",
|
122 |
+
sources="upload",
|
123 |
+
type="pil",
|
124 |
+
elem_id="content_image",
|
125 |
+
)
|
126 |
with gr.Row():
|
127 |
# Button to trigger the generation process
|
128 |
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
129 |
+
|
130 |
with gr.Row(variant="panel"):
|
131 |
# Examples panel to provide sample images for users
|
132 |
gr.Examples(
|
|
|
143 |
label="Examples",
|
144 |
examples_per_page=20,
|
145 |
)
|
146 |
+
|
147 |
with gr.Row():
|
148 |
# Display the preprocessed image (after resizing and padding)
|
149 |
processed_image = gr.Image(label="Processed Image", interactive=False)
|
150 |
+
|
151 |
with gr.Column(scale=2):
|
152 |
with gr.Row():
|
153 |
with gr.Tab("Reconstruction"):
|
154 |
# 3D model viewer to display the reconstructed model
|
155 |
+
output_model = gr.Model3D(
|
156 |
+
height=512,
|
157 |
+
label="Output Model",
|
158 |
+
interactive=False
|
159 |
+
)
|
160 |
|
161 |
# Define the workflow for the Generate button
|
162 |
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
|
|
165 |
outputs=[processed_image],
|
166 |
).success(
|
167 |
fn=reconstruct_and_export,
|
168 |
+
inputs=[processed_image],
|
169 |
outputs=[output_model],
|
170 |
)
|
171 |
|