Ryukijano's picture
Update app.py
46e9028
raw
history blame
5.58 kB
import gradio as gr
import jax.numpy as jnp
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
from diffusers import FlaxScoreSdeVeScheduler, FlaxDPMSolverMultistepScheduler
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import torchvision
import torchvision.transforms as T
from flax.jax_utils import replicate
from flax.training.common_utils import shard
#from torchvision.transforms import v2 as T2
import cv2
import PIL
from PIL import Image
import numpy as np
import jax
import os
import torchvision.transforms.functional as F
output_res = (900,900)
conditioning_image_transforms = T.Compose(
[
#T2.ScaleJitter(target_size=output_res, scale_range=(0.5, 3.0))),
T.RandomCrop(size=output_res, pad_if_needed=True, padding_mode="symmetric"),
T.ToTensor(),
#T.Normalize([0.5], [0.5]),
]
)
cnet, cnet_params = FlaxControlNetModel.from_pretrained("./models/catcon-controlnet-wd", dtype=jnp.bfloat16, from_flax=True)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"./models/wd-1-5-b2-flax",
controlnet=cnet,
revision="flax",
dtype=jnp.bfloat16,
)
#scheduler, scheduler_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
# "Ryukijano/CatCon-One-Shot-Controlnet-SD-1-5-b2/wd-1-5-b2-flax",
# subfolder="scheduler"
#)
#params["scheduler"] = scheduler_state
#scheduler = FlaxDPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
#pipe.enable_model_cpu_offload()
def get_random(seed):
return jax.random.PRNGKey(seed)
# inference function takes prompt, negative prompt and image
def infer(prompt, negative_prompt, image):
# implement your inference function here
params["controlnet"] = cnet_params
num_samples = 1
inp = Image.fromarray(image)
cond_input = conditioning_image_transforms(inp)
cond_input = T.ToPILImage()(cond_input)
cond_img_in = pipe.prepare_image_inputs([cond_input] * num_samples)
cond_img_in = shard(cond_img_in)
prompt_in = pipe.prepare_text_inputs([prompt] * num_samples)
prompt_in = shard(prompt_in)
n_prompt_in = pipe.prepare_text_inputs([negative_prompt] * num_samples)
n_prompt_in = shard(n_prompt_in)
rng = get_random(0)
rng = jax.random.split(rng, jax.device_count())
p_params = replicate(params)
output = pipe(
prompt_ids=prompt_in,
image=cond_img_in,
params=p_params,
prng_seed=rng,
num_inference_steps=70,
neg_prompt_ids=n_prompt_in,
jit=True,
).images
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output_images
gr.Interface(
infer,
inputs=[
gr.Textbox(
label="Enter prompt",
max_lines=1,
placeholder="1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck",
),
gr.Textbox(
label="Enter negative prompt",
max_lines=1,
placeholder="low quality",
),
gr.Image(),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
title="Generate controlled outputs with Categorical Conditioning on Waifu Diffusion 1.5 beta 2.",
description="This Space uses image examples as style conditioning. Experimental proof of concept made for the [Huggingface JAX/Diffusers community sprint](https://github.com/huggingface/community-events/tree/main/jax-controlnet-sprint)[Demo available here](https://huggingface.co/spaces/Ryukijano/CatCon-One-Shot-Controlnet-SD-1-5-b2)[My teammate's demo is available here] (https://huggingface.co/spaces/Cognomen/CatCon-Controlnet-WD-1-5-b2) This is a controlnet for the Stable Diffusion checkpoint [Waifu Diffusion 1.5 beta 2](https://huggingface.co/waifu-diffusion/wd-1-5-beta2) which aims to guide image generation by conditioning outputs with patches of images from a common category of the training target examples. The current checkpoint has been trained for approx. 100k steps on a filtered subset of [Danbooru 2021](https://gwern.net/danbooru2021) using artists as the conditioned category with the aim of learning robust style transfer from an image example.Major limitations:- The current checkpoint was trained on 768x768 crops without aspect ratio checkpointing. Loss in coherence for non-square aspect ratios can be expected.- The training dataset is extremely noisy and used without filtering stylistic outliers from within each category, so performance may be less than ideal. A more diverse dataset with a larger variety of styles and categories would likely have better performance.- The Waifu Diffusion base model is a hybrid anime/photography model, and can unpredictably jump between those modalities.- As styling is sensitive to divergences in model checkpoints, the capabilities of this controlnet are not expected to predictably apply to other SD 2.X checkpoints.",
examples=[
["1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck", "realistic, real life", "wikipe_cond_1.png"],
["1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck", "realistic, real life", "wikipe_cond_2.png"],
["1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck", "realistic, real life", "wikipe_cond_3.png"]
],
allow_flagging=False,
).launch(enable_queue=True)