Spaces:
Sleeping
Sleeping
Updated model architecture
Browse files- llama_diffusion_model.py +173 -58
llama_diffusion_model.py
CHANGED
|
@@ -1,73 +1,172 @@
|
|
| 1 |
-
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
-
import
|
|
|
|
| 4 |
from torch.amp import autocast
|
| 5 |
-
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig
|
| 6 |
from peft import LoraConfig, get_peft_model
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
|
|
|
|
|
|
|
| 9 |
hf_token = os.getenv("HF_TOKEN")
|
| 10 |
|
| 11 |
-
class BidirectionalLlamaAttention(
|
| 12 |
-
def __init__(self, original_layer, masking='unidirectional'):
|
| 13 |
-
super().__init__()
|
| 14 |
-
self.original = original_layer
|
| 15 |
self.masking = masking
|
| 16 |
|
| 17 |
-
|
| 18 |
-
self.
|
| 19 |
-
self.
|
| 20 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
self.layer_idx = original_layer.layer_idx
|
| 27 |
-
self.scaling = original_layer.scaling
|
| 28 |
|
| 29 |
-
|
| 30 |
-
bsz, seq_len, _ = hidden_states.size()
|
| 31 |
|
| 32 |
-
query_states = self._split_heads(self.q_proj(hidden_states))
|
| 33 |
-
key_states = self._split_heads(self.k_proj(hidden_states))
|
| 34 |
-
value_states = self._split_heads(self.v_proj(hidden_states))
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
cos, sin = position_embeddings
|
| 37 |
-
query_states, key_states = self.
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
if self.masking == 'bidirectional':
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
attn_weights = F.softmax(attn_weights, dim=-1)
|
| 47 |
-
attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 48 |
|
| 49 |
-
attn_output
|
| 50 |
-
attn_output = self._merge_heads(attn_output)
|
| 51 |
-
return self.o_proj(attn_output), attn_weights
|
| 52 |
|
| 53 |
-
def _split_heads(self, x):
|
| 54 |
-
return x.view(x.size(0), x.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
| 55 |
|
| 56 |
-
def
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
k_rot = (k * cos) + (self._rotate_half(k) * sin)
|
| 64 |
-
return q_rot, k_rot
|
| 65 |
-
|
| 66 |
-
def _rotate_half(self, x):
|
| 67 |
-
x1 = x[..., : x.shape[-1] // 2]
|
| 68 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
| 69 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
class CustomTransformerConfig(PretrainedConfig):
|
| 73 |
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs):
|
|
@@ -79,7 +178,7 @@ class CustomTransformerConfig(PretrainedConfig):
|
|
| 79 |
self.dropout = dropout
|
| 80 |
self.prediction_chunk = prediction_chunk
|
| 81 |
self.max_position_embeddings = max_position_embeddings
|
| 82 |
-
|
| 83 |
|
| 84 |
class CustomTransformerModel(PreTrainedModel):
|
| 85 |
config_class = CustomTransformerConfig
|
|
@@ -87,12 +186,15 @@ class CustomTransformerModel(PreTrainedModel):
|
|
| 87 |
def __init__(self, config):
|
| 88 |
super().__init__(config)
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
self.llama.resize_token_embeddings(config.vocab_size)
|
| 92 |
|
| 93 |
for i, layer in enumerate(self.llama.model.layers):
|
| 94 |
layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional')
|
| 95 |
|
|
|
|
| 96 |
for param in self.llama.parameters():
|
| 97 |
param.requires_grad = False
|
| 98 |
|
|
@@ -103,27 +205,40 @@ class CustomTransformerModel(PreTrainedModel):
|
|
| 103 |
r=256,
|
| 104 |
lora_alpha=256,
|
| 105 |
lora_dropout=0.0,
|
| 106 |
-
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
|
| 107 |
bias="none",
|
| 108 |
task_type=None
|
| 109 |
)
|
| 110 |
|
| 111 |
self.llama = get_peft_model(self.llama, lora_config)
|
|
|
|
| 112 |
self.llama = self.llama.to(torch.float16)
|
| 113 |
|
| 114 |
def forward(self, input_ids, labels=None, **kwargs):
|
| 115 |
batch_size, seq_length = input_ids.shape
|
| 116 |
-
assert seq_length == self.
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
logits = outputs.logits[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
loss = None
|
| 123 |
if labels is not None:
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
| 126 |
|
|
|
|
| 127 |
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
|
| 128 |
|
| 129 |
|
|
|
|
|
|
|
| 1 |
import torch.nn as nn
|
| 2 |
+
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig
|
| 3 |
+
from transformers.models.llama.modeling_llama import LlamaAttention
|
| 4 |
from torch.amp import autocast
|
|
|
|
| 5 |
from peft import LoraConfig, get_peft_model
|
| 6 |
+
from typing import Optional, Tuple
|
| 7 |
+
import torch
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
|
| 11 |
+
|
| 12 |
hf_token = os.getenv("HF_TOKEN")
|
| 13 |
|
| 14 |
+
class BidirectionalLlamaAttention(LlamaAttention):
|
| 15 |
+
def __init__(self, original_layer, masking = 'unidirectional'):
|
| 16 |
+
super().__init__(original_layer.config, layer_idx=original_layer.layer_idx)
|
|
|
|
| 17 |
self.masking = masking
|
| 18 |
|
| 19 |
+
# Copy weights from original layer
|
| 20 |
+
self.q_proj.weight = original_layer.q_proj.weight
|
| 21 |
+
self.k_proj.weight = original_layer.k_proj.weight
|
| 22 |
+
self.v_proj.weight = original_layer.v_proj.weight
|
| 23 |
+
self.o_proj.weight = original_layer.o_proj.weight
|
| 24 |
+
|
| 25 |
+
def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 26 |
+
"""
|
| 27 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 28 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 29 |
+
"""
|
| 30 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 31 |
+
if n_rep == 1:
|
| 32 |
+
return hidden_states
|
| 33 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 34 |
+
|
| 35 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 36 |
+
|
| 37 |
+
def eager_attention_forward(self,
|
| 38 |
+
module: nn.Module,
|
| 39 |
+
query: torch.Tensor,
|
| 40 |
+
key: torch.Tensor,
|
| 41 |
+
value: torch.Tensor,
|
| 42 |
+
attention_mask: Optional[torch.Tensor],
|
| 43 |
+
scaling: float,
|
| 44 |
+
dropout: float = 0.0,
|
| 45 |
+
**kwargs,
|
| 46 |
+
):
|
| 47 |
+
key_states = self.repeat_kv(key, module.num_key_value_groups)
|
| 48 |
+
value_states = self.repeat_kv(value, module.num_key_value_groups)
|
| 49 |
+
|
| 50 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 51 |
+
if attention_mask is not None:
|
| 52 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 53 |
+
attn_weights = attn_weights + causal_mask
|
| 54 |
+
|
| 55 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype)
|
| 56 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 57 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 58 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 59 |
+
|
| 60 |
+
return attn_output, attn_weights
|
| 61 |
|
| 62 |
+
def rotate_half(self, x):
|
| 63 |
+
"""Rotates half the hidden dims of the input."""
|
| 64 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 65 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
| 68 |
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 71 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
q (`torch.Tensor`): The query tensor.
|
| 75 |
+
k (`torch.Tensor`): The key tensor.
|
| 76 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 77 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 78 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 79 |
+
Deprecated and unused.
|
| 80 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 81 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 82 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 83 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 84 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 85 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 86 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 87 |
+
Returns:
|
| 88 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 89 |
+
"""
|
| 90 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 91 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 92 |
+
q_embed = (q * cos) + (self.rotate_half(q) * sin)
|
| 93 |
+
k_embed = (k * cos) + (self.rotate_half(k) * sin)
|
| 94 |
+
|
| 95 |
+
return q_embed, k_embed
|
| 96 |
+
|
| 97 |
+
def forward(
|
| 98 |
+
self,
|
| 99 |
+
hidden_states: torch.Tensor,
|
| 100 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 101 |
+
attention_mask: Optional[torch.Tensor],
|
| 102 |
+
past_key_value: Optional[torch.Tensor] = None,
|
| 103 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 104 |
+
**kwargs,
|
| 105 |
+
):
|
| 106 |
+
input_shape = hidden_states.shape[:-1]
|
| 107 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 108 |
+
|
| 109 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 110 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 111 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 112 |
+
|
| 113 |
+
# Apply rotary embeddings
|
| 114 |
cos, sin = position_embeddings
|
| 115 |
+
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 116 |
|
| 117 |
+
if past_key_value is not None:
|
| 118 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 119 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 120 |
+
|
| 121 |
+
# 🔄 **Modify the Attention Mask**
|
| 122 |
+
seq_len = hidden_states.shape[1]
|
| 123 |
+
batch_size = hidden_states.shape[0]
|
| 124 |
if self.masking == 'bidirectional':
|
| 125 |
+
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
|
| 126 |
+
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
|
| 127 |
+
elif self.masking == 'bidirectional_masked':
|
| 128 |
+
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
|
| 129 |
+
base_mask[:, 1:].fill_diagonal_(False) # ✅ Apply diagonal masking only in 2D
|
| 130 |
+
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
|
| 131 |
+
else: # unidirectional
|
| 132 |
+
# 🚀 Standard autoregressive (causal) mask
|
| 133 |
+
attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device, dtype=torch.bool))
|
| 134 |
+
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# Call the default attention function
|
| 138 |
+
attn_output, attn_weights = self.eager_attention_forward(
|
| 139 |
+
self,
|
| 140 |
+
query_states,
|
| 141 |
+
key_states,
|
| 142 |
+
value_states,
|
| 143 |
+
attn_mask, # ✅ Custom mask is applied here
|
| 144 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 145 |
+
scaling=self.scaling,
|
| 146 |
+
**kwargs,
|
| 147 |
+
)
|
| 148 |
|
| 149 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 150 |
+
attn_output = self.o_proj(attn_output)
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
return attn_output, attn_weights
|
|
|
|
|
|
|
| 153 |
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
| 156 |
+
"""
|
| 157 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
| 158 |
+
"""
|
| 159 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
| 160 |
+
tensor = tensor.view(*new_shape)
|
| 161 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
| 164 |
+
"""
|
| 165 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
| 166 |
+
"""
|
| 167 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 168 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
| 169 |
+
return tensor.view(new_shape)
|
| 170 |
|
| 171 |
class CustomTransformerConfig(PretrainedConfig):
|
| 172 |
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs):
|
|
|
|
| 178 |
self.dropout = dropout
|
| 179 |
self.prediction_chunk = prediction_chunk
|
| 180 |
self.max_position_embeddings = max_position_embeddings
|
| 181 |
+
self.input_size = prediction_chunk
|
| 182 |
|
| 183 |
class CustomTransformerModel(PreTrainedModel):
|
| 184 |
config_class = CustomTransformerConfig
|
|
|
|
| 186 |
def __init__(self, config):
|
| 187 |
super().__init__(config)
|
| 188 |
|
| 189 |
+
# Load pre-trained Llama model (excluding its original lm_head)
|
| 190 |
+
self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token = hf_token)
|
| 191 |
+
|
| 192 |
self.llama.resize_token_embeddings(config.vocab_size)
|
| 193 |
|
| 194 |
for i, layer in enumerate(self.llama.model.layers):
|
| 195 |
layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional')
|
| 196 |
|
| 197 |
+
# Freeze Llama to retain pre-trained knowledge
|
| 198 |
for param in self.llama.parameters():
|
| 199 |
param.requires_grad = False
|
| 200 |
|
|
|
|
| 205 |
r=256,
|
| 206 |
lora_alpha=256,
|
| 207 |
lora_dropout=0.0,
|
| 208 |
+
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Llama-3 uses these attention modules
|
| 209 |
bias="none",
|
| 210 |
task_type=None
|
| 211 |
)
|
| 212 |
|
| 213 |
self.llama = get_peft_model(self.llama, lora_config)
|
| 214 |
+
self.llama.print_trainable_parameters() # Print number of trainable parameters
|
| 215 |
self.llama = self.llama.to(torch.float16)
|
| 216 |
|
| 217 |
def forward(self, input_ids, labels=None, **kwargs):
|
| 218 |
batch_size, seq_length = input_ids.shape
|
| 219 |
+
assert seq_length == self.input_size, f"Expected input length input_size, got {seq_length}"
|
| 220 |
+
|
| 221 |
+
with autocast("cuda", dtype=torch.float16): # ✅ Correct future-proof usage
|
| 222 |
+
|
| 223 |
|
| 224 |
+
outputs = self.llama(input_ids, output_hidden_states=True, **kwargs)
|
| 225 |
+
|
| 226 |
+
logits = outputs.logits[:,:,:self.config.vocab_size]
|
| 227 |
+
|
| 228 |
+
# Reshape logits to (batch, input_size, vocab_size)
|
| 229 |
+
logits = logits.view(batch_size, self.config.prediction_chunk, self.config.vocab_size)
|
| 230 |
+
|
| 231 |
+
loss = None
|
| 232 |
|
|
|
|
| 233 |
if labels is not None:
|
| 234 |
+
assert labels.shape == (batch_size, self.input_size), f"Labels shape mismatch: expected (batch, input_size), got {labels.shape}"
|
| 235 |
+
|
| 236 |
+
# Compute loss
|
| 237 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
| 238 |
+
|
| 239 |
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
| 240 |
|
| 241 |
+
|
| 242 |
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
|
| 243 |
|
| 244 |
|