Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,83 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ast import Str
|
2 |
+
import gradio as gr
|
3 |
+
from tweetnlp import Sentiment, NER
|
4 |
+
from typing import Tuple, Dict
|
5 |
+
from statistics import mean
|
6 |
+
|
7 |
+
def clean_tweet(tweet: str, remove_chars: str = "@#") -> str:
|
8 |
+
"""Remove any unwanted characters
|
9 |
+
Args:
|
10 |
+
tweet (str): The raw tweet
|
11 |
+
remove_chars (str, optional): The characters to remove. Defaults to "@#".
|
12 |
+
Returns:
|
13 |
+
str: The tweet with these characters removed
|
14 |
+
"""
|
15 |
+
for char in remove_chars:
|
16 |
+
tweet = tweet.replace(char, "")
|
17 |
+
return tweet
|
18 |
+
|
19 |
+
|
20 |
+
def format_sentiment(model_output: Dict) -> Dict:
|
21 |
+
"""Format the output of the sentiment model
|
22 |
+
Args:
|
23 |
+
model_output (Dict): The model output
|
24 |
+
Returns:
|
25 |
+
Dict: The format for gradio
|
26 |
+
"""
|
27 |
+
formatted_output = dict()
|
28 |
+
if model_output["label"] == "positive":
|
29 |
+
formatted_output["positive"] = model_output["probability"]
|
30 |
+
formatted_output["negative"] = 1 - model_output["probability"]
|
31 |
+
else:
|
32 |
+
formatted_output["negative"] = model_output["probability"]
|
33 |
+
formatted_output["positive"] = 1 - model_output["probability"]
|
34 |
+
return formatted_output
|
35 |
+
|
36 |
+
|
37 |
+
def format_entities(model_output: Dict) -> Dict:
|
38 |
+
"""Format the output of the NER model
|
39 |
+
Args:
|
40 |
+
model_output (Dict): The model output
|
41 |
+
Returns:
|
42 |
+
Dict: The format for gradio
|
43 |
+
"""
|
44 |
+
formatted_output = dict()
|
45 |
+
for entity in model_output["entity_prediction"]:
|
46 |
+
new_output = dict()
|
47 |
+
name = " ".join(entity["entity"])
|
48 |
+
entity_type = entity["type"]
|
49 |
+
new_key = f"{name}:{entity_type}"
|
50 |
+
new_value = mean(entity["probability"])
|
51 |
+
formatted_output[new_key] = new_value
|
52 |
+
return formatted_output
|
53 |
+
|
54 |
+
|
55 |
+
def classify(tweet: str) -> Tuple[Dict, Dict]:
|
56 |
+
"""Runs models
|
57 |
+
Args:
|
58 |
+
tweet (str): The raw tweet
|
59 |
+
Returns:
|
60 |
+
Tuple[Dict, Dict]: The formatted_sentiment and formatted_entities of the tweet
|
61 |
+
"""
|
62 |
+
tweet = clean_tweet(tweet)
|
63 |
+
# Get sentiment
|
64 |
+
model_sentiment = se_model.sentiment(tweet)
|
65 |
+
formatted_sentiment = format_sentiment(model_sentiment)
|
66 |
+
# Get entities
|
67 |
+
entities = ner_model.ner(tweet)
|
68 |
+
formatted_entities = format_entities(entities)
|
69 |
+
return formatted_sentiment, formatted_entities
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
# https://github.com/cardiffnlp/tweetnlp
|
74 |
+
se_model = Sentiment()
|
75 |
+
ner_model = NER()
|
76 |
+
|
77 |
+
# Get a few examples from: https://twitter.com/NFLFantasy
|
78 |
+
examples = list()
|
79 |
+
examples.append("Dameon Pierce is clearly the #Texans starter and he once again looks good")
|
80 |
+
examples.append("Deebo Samuel had 150+ receiving yards in 4 games last year - the most by any receiver in the league.")
|
81 |
+
|
82 |
+
iface = gr.Interface(fn=classify, inputs="text", outputs=["label", "label"], examples=examples)
|
83 |
+
iface.launch()
|