Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
def transform_data(df): | |
# Transform 'respond' variable | |
respond_mapping = { | |
"Parent": 1, "Teacher": 2, "Self": 3, "Other": 4, | |
"Significant other": 5, "Parent 1": 6, "Parent 2": 7, | |
"Not available": 999 | |
} | |
if 'respond' in df: | |
df['respond'] = df['respond'].map(respond_mapping) | |
# Transform 'sri_ts' and 'sld_ts' variables | |
sri_sld_values = { | |
8: 36.6, 9: 42.1, 10: 44.8, 11: 46.8, 12: 48.5, 13: 50.0, 14: 51.3, | |
15: 52.5, 16: 53.7, 17: 54.9, 18: 56.0, 19: 57.1, 20: 58.2, 21: 59.3, | |
22: 60.3, 23: 61.4, 24: 62.4, 25: 63.5, 26: 64.5, 27: 65.6, 28: 66.6, | |
29: 67.6, 30: 68.7, 31: 69.7, 32: 70.7, 33: 71.8, 34: 72.9, 35: 74.1, | |
36: 75.4, 37: 76.8, 38: 78.5, 39: 80.3, 40: 82.7 | |
} | |
if 'sri_rs' in df.columns: | |
df['sri_ts'] = df['sri_rs'].map(sri_sld_values).fillna("NA") | |
if 'sld_rs' in df.columns: | |
df['sld_ts'] = df['sld_rs'].map(sri_sld_values).fillna("NA") | |
# Transform 'dsm_cross_ch' variables | |
dsm_cross_ch_cols = [f'dsm_cross_ch{num}' for num in range(20, 26)] | |
for col in dsm_cross_ch_cols: | |
if col in df: | |
df[col] = df[col].map({0: 2, 1: 1}) | |
# Transform 'dsm_cross_pg' variables | |
dsm_cross_pg_cols = [f'dsm_cross_pg{num}' for num in range(20, 26)] | |
for col in dsm_cross_pg_cols: | |
if col in df: | |
df[col] = df[col].map({0: 1, 1: 2, 2: -9}) | |
# Transform 'rcads_y' variables | |
rcads_y_cols = [f'rcads_y{num}' for num in range(14, 27)] | |
for col in rcads_y_cols: | |
if col in df: | |
df[col] = df[col] + 1 | |
# Ensure rcads_y26 exists and set default values | |
if 'rcads_y26' not in df: | |
df['rcads_y26'] = 1 | |
# Return transformed dataframe | |
return df | |
def main(): | |
st.title("Data Transformation App") | |
uploaded_file = st.file_uploader("Upload CSV or Excel file", type=['csv', 'xlsx']) | |
if uploaded_file: | |
# Determine the file type and read data accordingly | |
if uploaded_file.name.endswith('.csv'): | |
df = pd.read_csv(uploaded_file) | |
elif uploaded_file.name.endswith('.xlsx'): | |
df = pd.read_excel(uploaded_file) | |
# Transform the data | |
transformed_df = transform_data(df) | |
# Display transformed data | |
st.write("Transformed Data:") | |
st.dataframe(transformed_df) | |
# Download link for transformed data | |
st.download_button( | |
label="Download Transformed Data", | |
data=transformed_df.to_csv(index=False).encode('utf-8'), | |
file_name='transformed_data.csv', | |
mime='text/csv', | |
) | |
if __name__ == '__main__': | |
main() |