Spaces:
Sleeping
Sleeping
Rundstedtz
commited on
Upload first version
Browse files- app.py +234 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
# import numpy as np
|
4 |
+
# import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
# # Placeholder for loading models
|
7 |
+
# def load_models():
|
8 |
+
# # In a real scenario, you would load your pre-trained models here.
|
9 |
+
# return {"model_placeholder": "Loaded Model"}
|
10 |
+
|
11 |
+
# # Placeholder function to classify news as ESG-related
|
12 |
+
# def classify_esg(text, models, api_key):
|
13 |
+
# # Simulate ESG classification logic
|
14 |
+
# # This is where you would use your model to classify the text.
|
15 |
+
# return np.random.choice(["Yes", "No"])
|
16 |
+
|
17 |
+
# # Placeholder function to determine sentiment
|
18 |
+
# def determine_sentiment(text, models, api_key):
|
19 |
+
# # Simulate sentiment analysis logic
|
20 |
+
# # This is where you would use your model to determine the sentiment.
|
21 |
+
# return np.random.choice(["Positive", "Neutral", "Negative"])
|
22 |
+
|
23 |
+
# # Placeholder function to run Alphalens analysis
|
24 |
+
# def run_alphalens_analysis(data, models, api_key):
|
25 |
+
# # Simulate some metrics
|
26 |
+
# metrics = {"alpha": np.random.rand(), "beta": np.random.rand()}
|
27 |
+
|
28 |
+
# # Generate a simple plot
|
29 |
+
# fig, ax = plt.subplots()
|
30 |
+
# ax.plot([1, 2, 3], [1, 2, 3], 'r') # Example plot
|
31 |
+
# ax.set_title('Example Plot')
|
32 |
+
|
33 |
+
# return metrics, [fig]
|
34 |
+
|
35 |
+
# # Streamlit app code
|
36 |
+
# models = load_models()
|
37 |
+
|
38 |
+
# st.title('NLP Project: ESG News Analysis and Financial Impact')
|
39 |
+
|
40 |
+
# api_key = st.sidebar.text_input("OpenAI API Key", type="password")
|
41 |
+
|
42 |
+
# uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
43 |
+
# if uploaded_file is not None:
|
44 |
+
# data = pd.read_csv(uploaded_file)
|
45 |
+
# st.write("Uploaded News Data:")
|
46 |
+
# st.dataframe(data)
|
47 |
+
|
48 |
+
# if st.button('Classify News as ESG-related'):
|
49 |
+
# data['ESG'] = data['news'].apply(lambda x: classify_esg(x, models, api_key))
|
50 |
+
# st.write("News with ESG Classification:")
|
51 |
+
# st.dataframe(data)
|
52 |
+
|
53 |
+
# if st.button('Determine Sentiment'):
|
54 |
+
# data['Sentiment'] = data['news'].apply(lambda x: determine_sentiment(x, models, api_key))
|
55 |
+
# st.write("News with Sentiment Analysis:")
|
56 |
+
# st.dataframe(data)
|
57 |
+
|
58 |
+
# if st.button('Run Alphalens Analysis'):
|
59 |
+
# metrics, plots = run_alphalens_analysis(data, models, api_key)
|
60 |
+
# st.write("Alphalens Analysis Metrics:")
|
61 |
+
# st.json(metrics)
|
62 |
+
|
63 |
+
# st.write("Alphalens Analysis Plots:")
|
64 |
+
# for plot in plots:
|
65 |
+
# st.pyplot(plot)
|
66 |
+
|
67 |
+
|
68 |
+
import streamlit as st
|
69 |
+
import pandas as pd
|
70 |
+
import numpy as np
|
71 |
+
import os
|
72 |
+
import openai
|
73 |
+
import json
|
74 |
+
from getpass import getpass
|
75 |
+
from tqdm import tqdm
|
76 |
+
import matplotlib.pyplot as plt
|
77 |
+
|
78 |
+
def get_sentiment_gpt(company, SASB, news, max_retries=5, model = 'gpt-4-turbo-2024-04-09'):
|
79 |
+
system_prompt = """
|
80 |
+
As a specialist in ESG analytics,
|
81 |
+
You possess a deep understanding of evaluating environmental, social, and governance factors in the context of corporate news.
|
82 |
+
Your expertise lies in discerning the underlying sentiment of news segments that pertain to a company's ESG practices,
|
83 |
+
determining whether the coverage reflects a positive, negative, or neutral stance.
|
84 |
+
"""
|
85 |
+
|
86 |
+
allowed_sentiments = ['Negative', 'Positive', 'Neutral']
|
87 |
+
attempt = 0
|
88 |
+
|
89 |
+
while attempt < max_retries:
|
90 |
+
main_prompt = f"""
|
91 |
+
Classify the sentiment (Only options: Positive, Negative, Neutral) of the following news: {news} |
|
92 |
+
The sentiment classification should be about the sections of the news talking about the company {company}. |
|
93 |
+
The ESG part of the news should be around topics within the following SASB topics {SASB}
|
94 |
+
|
95 |
+
The output should be a structured JSON object with the key: "sentiment".
|
96 |
+
|
97 |
+
Here is the format I expect for the JSON object:
|
98 |
+
|
99 |
+
{{
|
100 |
+
"sentiment": "Enter 'Positive', 'Neutral', or 'Negative'",
|
101 |
+
}}
|
102 |
+
|
103 |
+
Do not return any additional text or information outside of this JSON structure.
|
104 |
+
"""
|
105 |
+
|
106 |
+
messages = [
|
107 |
+
{"role": "system", "content": system_prompt},
|
108 |
+
{"role": "user", "content": main_prompt}
|
109 |
+
]
|
110 |
+
|
111 |
+
response = openai.chat.completions.create(
|
112 |
+
model=model,
|
113 |
+
messages=messages,
|
114 |
+
response_format={"type": "json_object"} # Enable JSON mode
|
115 |
+
)
|
116 |
+
|
117 |
+
response_json = json.loads(response.choices[0].message.content)
|
118 |
+
json_sentiment = response_json.get('sentiment')
|
119 |
+
|
120 |
+
if json_sentiment in allowed_sentiments:
|
121 |
+
return json_sentiment
|
122 |
+
|
123 |
+
attempt += 1
|
124 |
+
|
125 |
+
# After max retries, if no valid sentiment is found, handle as needed (e.g., return a default sentiment)
|
126 |
+
print("Failed to obtain a valid sentiment after maximum retries. Defaulting to 'Neutral'.")
|
127 |
+
return 'Neutral' # Default return value if no valid sentiment is obtained
|
128 |
+
|
129 |
+
|
130 |
+
def update_dataset_with_gpt_sentiment(df, model, column_name='GPT_based_sentiment'):
|
131 |
+
# Initialize the new column to store GPT-based sentiment
|
132 |
+
df['GPT_based_sentiment'] = None
|
133 |
+
|
134 |
+
# Use tqdm to show a progress bar for the operation
|
135 |
+
for index, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows"):
|
136 |
+
# Extract necessary information for each row
|
137 |
+
company = row['Company'] # Make sure this matches your DataFrame's column name
|
138 |
+
SASB = row['SASB'] # Make sure this matches your DataFrame's column name
|
139 |
+
news = row['title & content'] # Make sure this matches your DataFrame's column name
|
140 |
+
|
141 |
+
# Call the function to get the sentiment
|
142 |
+
sentiment = get_sentiment_gpt(company, SASB, news, model=model)
|
143 |
+
|
144 |
+
# Update the DataFrame with the obtained sentiment
|
145 |
+
df.at[index, column_name] = sentiment # Now correctly assigns the sentiment
|
146 |
+
|
147 |
+
return df
|
148 |
+
|
149 |
+
def app_layout():
|
150 |
+
st.set_page_config(page_title="NLP ESG Project", page_icon="π")
|
151 |
+
|
152 |
+
# Custom styles
|
153 |
+
st.markdown(
|
154 |
+
"""
|
155 |
+
<style>
|
156 |
+
.streamlit-container {
|
157 |
+
background-color: #F5F5F5;
|
158 |
+
}
|
159 |
+
.stButton>button {
|
160 |
+
width: 100%;
|
161 |
+
border-radius: 10px;
|
162 |
+
border: none;
|
163 |
+
margin: 10px 0;
|
164 |
+
padding: 15px 20px;
|
165 |
+
background-color: #79AEC8;
|
166 |
+
color: white;
|
167 |
+
font-size: 18px;
|
168 |
+
}
|
169 |
+
.stButton>button:hover {
|
170 |
+
background-color: #6699CC;
|
171 |
+
}
|
172 |
+
</style>
|
173 |
+
""",
|
174 |
+
unsafe_allow_html=True,
|
175 |
+
)
|
176 |
+
|
177 |
+
# Header section
|
178 |
+
st.write("# NLP Project: ESG News Analysis and Financial Impact")
|
179 |
+
st.sidebar.write("## Configuration")
|
180 |
+
|
181 |
+
# API Key input
|
182 |
+
openai_api_key = st.sidebar.text_input("Enter your OpenAI API key", type="password")
|
183 |
+
|
184 |
+
# File Upload
|
185 |
+
st.sidebar.write("## Upload Data")
|
186 |
+
uploaded_file = st.sidebar.file_uploader("", type="csv")
|
187 |
+
|
188 |
+
# Investment Strategy Slider
|
189 |
+
st.sidebar.markdown("### Investment Strategy")
|
190 |
+
investment_strategy = st.sidebar.slider(
|
191 |
+
"Investment Strategy",
|
192 |
+
min_value=0.0, max_value=1.0, value=0.5, step=0.01,
|
193 |
+
format="",
|
194 |
+
help="0 is Conservative, 1 is Aggressive",
|
195 |
+
label_visibility="collapsed"
|
196 |
+
)
|
197 |
+
st.sidebar.text(f"Current Strategy: {'Conservative' if investment_strategy <= 0.5 else 'Aggressive'}")
|
198 |
+
|
199 |
+
# Main container
|
200 |
+
if uploaded_file is not None:
|
201 |
+
# Displaying the file
|
202 |
+
data = pd.read_csv(uploaded_file)
|
203 |
+
st.write("### Uploaded News Data:")
|
204 |
+
st.dataframe(data, use_container_width=True)
|
205 |
+
|
206 |
+
if st.button("π Classify ESG"):
|
207 |
+
st.write("Classifying ESG-related news...")
|
208 |
+
# Placeholder - replace with actual ESG classification code
|
209 |
+
data['ESG'] = "Yes" # placeholder
|
210 |
+
|
211 |
+
if st.button("π Determine Sentiment"):
|
212 |
+
st.write("Determining sentiment using GPT...")
|
213 |
+
# Run sentiment analysis with GPT
|
214 |
+
try:
|
215 |
+
with st.spinner("Analyzing sentiment..."):
|
216 |
+
# Assume you have your API key set and a function defined to handle sentiment analysis
|
217 |
+
updated_data = update_dataset_with_gpt_sentiment(data, model='gpt-4-turbo-2024-04-09')
|
218 |
+
st.write("News with GPT-based Sentiment Analysis:")
|
219 |
+
st.dataframe(updated_data, use_container_width=True)
|
220 |
+
except Exception as e:
|
221 |
+
st.error(f"An error occurred: {e}")
|
222 |
+
|
223 |
+
if st.button("π Alphalens Analysis"):
|
224 |
+
st.write("Alphalens analysis will be here") # placeholder
|
225 |
+
|
226 |
+
# Expander for advanced settings
|
227 |
+
with st.expander("Advanced Settings"):
|
228 |
+
st.write("Any advanced settings and configurations will go here.")
|
229 |
+
|
230 |
+
def main():
|
231 |
+
app_layout()
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
os
|
5 |
+
openai
|
6 |
+
json
|
7 |
+
getpass
|
8 |
+
tqdm
|
9 |
+
matplotlib.pyplot
|