Spaces:
Build error
Build error
YouRadiologist Update
Browse files- .gitignore +134 -0
- app.py +503 -225
- requirements.txt +13 -97
.gitignore
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
|
132 |
+
### other files
|
133 |
+
csvs/
|
134 |
+
model/
|
app.py
CHANGED
@@ -1,51 +1,38 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from numpy import expand_dims
|
4 |
-
from matplotlib import pyplot
|
5 |
-
from PIL import Image, ImageDraw, ImageFont
|
6 |
-
import numpy as np
|
7 |
import os
|
8 |
-
import os,sys
|
9 |
-
sys.path.insert(0,"..")
|
10 |
-
from glob import glob
|
11 |
-
import torch
|
12 |
-
import torchvision
|
13 |
import sys
|
14 |
-
|
15 |
-
|
16 |
-
import
|
17 |
-
import PIL # optional
|
18 |
import pandas as pd
|
19 |
import matplotlib.pyplot as plt
|
20 |
-
import
|
21 |
-
import
|
22 |
-
import
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
import operator
|
25 |
import mols2grid
|
26 |
import streamlit.components.v1 as components
|
27 |
from rdkit import Chem
|
28 |
from rdkit.Chem.Descriptors import ExactMolWt
|
29 |
from chembl_webresource_client.new_client import new_client
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
### Description
|
34 |
-
st.markdown("""<p style='text-align: center;'>The goal of this application is mainly to help doctors to interpret
|
35 |
-
Chest X-Ray Images, being able to find medical compounds in a quick way to deal with Chest's anomalies found</p>""",unsafe_allow_html=True)
|
36 |
-
|
37 |
-
### Image
|
38 |
-
st.image("doctors.jpg")
|
39 |
-
|
40 |
-
### Uploder
|
41 |
-
# st.markdown("""<p style='text-align: center;'>The goal of this application is mainly to help doctors to interpret
|
42 |
-
# Chest X-Ray Images, being able to find medical compounds in a quick way to deal with Chest's anomalies found</p>""",unsafe_allow_html=True)
|
43 |
-
uploaded_file = st.file_uploader("Choose an X-Ray image to detect anomalies of the chest (the file must be a dicom extension or jpg)")
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
####
|
|
|
49 |
@st.cache(allow_output_mutation=True)
|
50 |
def getdrugs(name,phase):
|
51 |
drug_indication = new_client.drug_indication
|
@@ -87,212 +74,503 @@ def getdrugs(name,phase):
|
|
87 |
return df.loc[:,subs]
|
88 |
except:
|
89 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
95 |
|
96 |
# sample = Image.open("JPG_test/0c4eb1e1-b801903c-bcebe8a4-3da9cd3c-3b94a27c.jpg")
|
97 |
-
sample = Image.open(
|
98 |
return np.array(sample)
|
99 |
-
if str(
|
100 |
-
img = dicom.dcmread(
|
|
|
101 |
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
img = (img / 1024.0 / 2.0) + 0.5
|
111 |
img = np.clip(img, 0, 1)
|
112 |
img = Image.fromarray(np.uint8(img * 255) , 'L')
|
113 |
-
return img
|
114 |
-
### Transform the image to test an output image
|
115 |
-
def transform(img):
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
return
|
151 |
-
|
152 |
-
|
153 |
-
def
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
|
|
|
|
|
|
|
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
### Error in case we do not find compounds
|
177 |
def error(option):
|
178 |
option = str(option).replace(" ","%20")
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
)
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
)
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
### Plot the input image
|
249 |
-
fig, ax = plt.subplots()
|
250 |
-
ax.imshow(imgdef,cmap="gray")
|
251 |
-
st.pyplot(fig=fig)
|
252 |
-
# Printing the possibility of having anomalies
|
253 |
-
st.markdown("<h3 style='text-align: center;'>Possibility of anomalies</h3>",unsafe_allow_html=True)
|
254 |
-
model = generatemodel(xrv.models.DenseNet,"densenet121-res224-mimic_ch") ### MIMIC MODEL+
|
255 |
-
model.eval()
|
256 |
-
pr = outputprob2(imgdef,model)
|
257 |
-
|
258 |
-
# Sort results by the descending probability order
|
259 |
-
pr = dict( sorted(pr.items(), key=operator.itemgetter(1),reverse=True))
|
260 |
-
# Select the treatment
|
261 |
-
option = st.sidebar.selectbox('Anomaly',list(pr.keys()),help='Select the illness or anomaly you want to treat')
|
262 |
-
col1,col2,col3 = st.columns((1,1,1))
|
263 |
-
cnt = 1
|
264 |
-
for (key,value) in pr.items():
|
265 |
-
if cnt%3==1:
|
266 |
-
col1.metric(label=key, value=str(cnt), delta=str(value))
|
267 |
-
if cnt%3==2:
|
268 |
-
col2.metric(label=key, value=str(cnt), delta=str(value))
|
269 |
-
if cnt%3==0:
|
270 |
-
col3.metric(label=key, value=str(cnt), delta=str(value))
|
271 |
-
cnt+=1
|
272 |
-
# temp = st.expander("Compunds to take care of {}".format(key))
|
273 |
-
#### Get the compounds for the anomaly selected
|
274 |
-
df = getdrugs(option,max_phase)
|
275 |
-
st.markdown("<h3 style='text-align: center;'>Compounds for {}</h3>".format(option),unsafe_allow_html=True)
|
276 |
-
### If exists the compounds
|
277 |
-
if df is not None:
|
278 |
-
|
279 |
-
#### Filter dataframe by controllers
|
280 |
-
df_result = df[df["mol_weight"] < weight_cutoff]
|
281 |
-
df_result2 = df_result[df_result["Logp"] < logp_cutoff]
|
282 |
-
df_result3 = df_result2[df_result2["Donnors"] < NumHDonors_cutoff]
|
283 |
-
df_result4 = df_result3[df_result3["Acceptors"] < NumHAcceptors_cutoff]
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
if len(df_result4)==0:
|
288 |
|
289 |
error(option)
|
290 |
-
else:
|
291 |
-
raw_html = mols2grid.display(df_result, mapping={"smiles": "SMILES","pref_name":"Name","Acceptors":"Acceptors","Donnors":"Donnors","Logp":"Logp","mol_weight":"mol_weight"},
|
292 |
-
subset=["img","Name"],tooltip=["Name","Acceptors","Donnors","Logp","mol_weight"],tooltip_placement="top",tooltip_trigger="click hover")._repr_html_()
|
293 |
-
|
294 |
-
components.html(raw_html, width=900, height=900, scrolling=True)
|
295 |
-
#### We do not find compounds for the anomaly
|
296 |
-
else:
|
297 |
-
error(option)
|
298 |
|
|
|
|
|
|
1 |
+
### FRAMEWORKS AND DEPENDENCIES
|
2 |
+
import copy
|
|
|
|
|
|
|
|
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
4 |
import sys
|
5 |
+
from collections import OrderedDict
|
6 |
+
from pathlib import Path
|
7 |
+
import numpy as np
|
|
|
8 |
import pandas as pd
|
9 |
import matplotlib.pyplot as plt
|
10 |
+
import matplotlib.cm as mpl_color_map
|
11 |
+
from PIL import Image, ImageFilter
|
12 |
+
from collections import OrderedDict
|
13 |
+
import matplotlib as mpl
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torchvision import datasets, models, transforms
|
17 |
+
import torchxrayvision as xrv
|
18 |
+
from pytorch_grad_cam import GradCAM
|
19 |
+
# Other methods available: ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM
|
20 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
21 |
+
from skimage.io import imread
|
22 |
+
import pydicom as dicom
|
23 |
import operator
|
24 |
import mols2grid
|
25 |
import streamlit.components.v1 as components
|
26 |
from rdkit import Chem
|
27 |
from rdkit.Chem.Descriptors import ExactMolWt
|
28 |
from chembl_webresource_client.new_client import new_client
|
29 |
+
import streamlit as st
|
30 |
|
31 |
+
####UTILS.PY
|
32 |
+
model_names = ['densenet121-res224-mimic_nb', 'densenet121-res224-mimic_ch']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
#### FUNCTIONS FOR STREAMLIT
|
35 |
+
### Cache Drugs (Get Compounds found)
|
36 |
@st.cache(allow_output_mutation=True)
|
37 |
def getdrugs(name,phase):
|
38 |
drug_indication = new_client.drug_indication
|
|
|
74 |
return df.loc[:,subs]
|
75 |
except:
|
76 |
return None
|
77 |
+
### Title
|
78 |
+
def header():
|
79 |
+
|
80 |
+
st.markdown("<h1 style='text-align: center;'>Chest Anomaly Identifier</h1>",unsafe_allow_html=True)
|
81 |
+
### Description
|
82 |
+
st.markdown("""<p style='text-align: center;'>This is a pocket application that is mainly focused on aiding medical
|
83 |
+
professionals on their diagnostics and treatments for chest anomalies based on chest X-Rays. On this application, users
|
84 |
+
can upload a chest X-Ray image and a deep learning model will output the probability of 14 different anomalies taking
|
85 |
+
place on that image</p>""",unsafe_allow_html=True)
|
86 |
+
|
87 |
+
### Image
|
88 |
+
st.image("doctors.jpg")
|
89 |
+
### Controllers
|
90 |
+
def controllers2(model_probs):
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
# Select the anomaly to detect
|
96 |
+
st.sidebar.markdown("<h1 style='text-align: center;'>Anomaly detection</h1>",unsafe_allow_html=True)
|
97 |
+
option_anomaly = st.sidebar.selectbox('Select Anomaly to detect',['Atelectasis', 'Consolidation', 'Pneumothorax','Edema', 'Effusion', 'Pneumonia', 'Cardiomegaly'],help='Select the anomaly you want to detect')
|
98 |
+
# Filtering anomalies
|
99 |
+
st.sidebar.markdown('''
|
100 |
+
<h4 style='text-align: center;'>This controller is used to filter anomaly detection </h4>
|
101 |
+
|
102 |
+
- N : Select the number of most likely anomalies you want to detect
|
103 |
+
- Threshold : It measures how strict you are with the threshold
|
104 |
+
- Colors : For color intensity of anomaly detection
|
105 |
+
- Obscureness : For darker or lighter colors
|
106 |
+
|
107 |
+
|
108 |
+
''',unsafe_allow_html=True)
|
109 |
+
|
110 |
+
N = st.sidebar.slider(label="N",min_value=1,max_value=5,value=3,step=1,help="Select the number of most likely anomalies you want to detect")
|
111 |
+
threshold = st.sidebar.slider(label="Threshold",min_value=0.0,max_value=1.0,value=0.3,step=0.1,help="Select the degree of confidence you want to detect. The more is the value the more strict you are in your detection")
|
112 |
+
colors = st.sidebar.slider("Intense Colors",min_value=0.0,max_value=1.0,value=0.6,step=0.1,help="Select the color intensity you want to display at the time on detecting an anomaly. The higuer the value, the more intense the color")
|
113 |
+
obscureness = st.sidebar.slider("Obscureness",min_value=0.0,max_value=1.0,value=0.8,step=0.1,help="Select the obscureness you want your colors have. The higuer the value, the more obscure is the color")
|
114 |
+
|
115 |
+
|
116 |
+
# Select the treatment
|
117 |
+
|
118 |
+
st.sidebar.markdown("<h1 style='text-align: center;'>Anomaly Treatment</h1>",unsafe_allow_html=True)
|
119 |
+
option = st.sidebar.selectbox('Select the anomaly for treatment',list(model_probs[model_names[0]].keys()),help='Select the anomaly you want to treat')
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
#### Filtering treatments
|
124 |
+
st.sidebar.markdown("<h1 style='text-align: center;'>Compound's filter</h1>",unsafe_allow_html=True)
|
125 |
+
## Write the compound
|
126 |
+
st.sidebar.markdown('''
|
127 |
+
<h4 style='text-align: center;'>This controller sidebar is used to filter the compounds by the following features</h4>
|
128 |
+
|
129 |
+
- Molecular weight : is the weight of a compound in grame per mol
|
130 |
+
- LogP : it measures how hydrophilic or hydrophobic a compound is
|
131 |
+
- NumDonnors : number of chemical components that are able to deliver electrons to other chemical components
|
132 |
+
- NumAcceptors : number of chemical components that are able to accept electrons to other chemical components
|
133 |
+
- MaxPhase : select the phase in which the compound is stablished
|
134 |
+
''',unsafe_allow_html=True)
|
135 |
+
weight_cutoff = st.sidebar.slider(
|
136 |
+
label="Molecular weight",
|
137 |
+
min_value=0,
|
138 |
+
max_value=1000,
|
139 |
+
value=500,
|
140 |
+
step=10,
|
141 |
+
help="Look for compounds that have less or equal molecular weight than the value selected"
|
142 |
+
)
|
143 |
+
logp_cutoff = st.sidebar.slider(
|
144 |
+
label="LogP",
|
145 |
+
min_value=-10,
|
146 |
+
max_value=10,
|
147 |
+
value=5,
|
148 |
+
step=1,
|
149 |
+
help="Look for compounds that have less or equal logp than the value selected"
|
150 |
+
)
|
151 |
+
NumHDonors_cutoff = st.sidebar.slider(
|
152 |
+
label="NumHDonors",
|
153 |
+
min_value=0,
|
154 |
+
max_value=15,
|
155 |
+
value=5,
|
156 |
+
step=1,
|
157 |
+
help="Look for compounds that have less or equal donors weight than the value selected"
|
158 |
+
)
|
159 |
+
NumHAcceptors_cutoff = st.sidebar.slider(
|
160 |
+
label="NumHAcceptors",
|
161 |
+
min_value=0,
|
162 |
+
max_value=20,
|
163 |
+
value=10,
|
164 |
+
step=1,
|
165 |
+
help="Look for compounds that have less or equal acceptors weight than the value selected"
|
166 |
+
)
|
167 |
+
max_phase = st.sidebar.multiselect("Select Phase of the compound",
|
168 |
+
['1','2', '3', '4'],
|
169 |
+
help="""
|
170 |
+
- Phase 1 : Phase I of the compound in progress
|
171 |
+
- Phase 2 : Phase II of the compound in progress
|
172 |
+
- Phase 3 : Phase III of the compound in progress
|
173 |
+
- Phase 4 : Approved compound """
|
174 |
+
)
|
175 |
+
|
176 |
+
return option_anomaly,threshold,colors,obscureness,option,weight_cutoff,logp_cutoff,NumHDonors_cutoff,NumHAcceptors_cutoff,max_phase,N
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
### MODEL.PY
|
181 |
+
|
182 |
+
def takemodel(models:OrderedDict,cams:OrderedDict,weights="mimic_ch"):
|
183 |
+
"""
|
184 |
+
Define models and cams of each model; tools useful for heatmap
|
185 |
+
Args:
|
186 |
+
models (OrderedDict[xrv.models.DenseNet]): the CNN of the model
|
187 |
+
cams (OrderedDict[GradCam]): Useful tool to make the heatmap
|
188 |
+
weights (str): Name of the pretrained model weights
|
189 |
+
"""
|
190 |
+
models[weights] = xrv.models.DenseNet(weights=weights)
|
191 |
+
models[weights].eval()
|
192 |
+
target_layer = models[weights].features[-2]
|
193 |
+
cams[weights] = GradCAM(models[weights], target_layer, use_cuda=False)
|
194 |
+
return models,cams
|
195 |
+
#### Read the image | Normalize
|
196 |
+
def normalize(sample, maxval):
|
197 |
+
"""
|
198 |
+
Scales images to be roughly [-1024 1024].
|
199 |
+
Args:
|
200 |
+
image (dicom,jp,png): image
|
201 |
+
maxval (int): maxvalue of the dicom image
|
202 |
+
|
203 |
+
From torchxrayvision
|
204 |
+
"""
|
205 |
+
|
206 |
+
if sample.max() > maxval:
|
207 |
+
raise Exception("max image value ({}) higher than expected bound ({}).".format(sample.max(), maxval))
|
208 |
+
|
209 |
+
sample = (2 * (sample.astype(np.float32) / maxval) - 1.) * 1024
|
210 |
+
#sample = sample / np.std(sample)
|
211 |
+
return sample
|
212 |
|
213 |
+
def extensionimages(image_path):
|
214 |
+
"""
|
215 |
+
Read Image of jpg dicom or png if it does not find the image returns skimage.io.imread(imgpath)
|
216 |
+
Args:
|
217 |
+
image_path (str): path of the image
|
218 |
|
219 |
+
"""
|
220 |
+
|
221 |
+
if (str(image_path).find("jpg")!=-1) or (str(image_path).find("png")!=-1):
|
222 |
|
223 |
# sample = Image.open("JPG_test/0c4eb1e1-b801903c-bcebe8a4-3da9cd3c-3b94a27c.jpg")
|
224 |
+
sample = Image.open(image_path)
|
225 |
return np.array(sample)
|
226 |
+
if str(image_path).find("dcm")!=-1:
|
227 |
+
img = dicom.dcmread(image_path).pixel_array
|
228 |
+
|
229 |
return img
|
230 |
+
else:
|
231 |
+
return imread(image_path)
|
232 |
+
|
233 |
+
|
234 |
+
def read_image(img, tr=None,visualize=True):
|
235 |
+
"""
|
236 |
+
Scales images to be roughly [-1024 1024].
|
237 |
+
Args:
|
238 |
+
image_path (str): path of the image
|
239 |
+
From torchxrayvision
|
240 |
+
"""
|
241 |
+
# img = extensionimages(image_path)
|
242 |
+
### If black image has 3 dim get just one channel
|
243 |
+
|
244 |
+
|
245 |
+
try:
|
246 |
+
img = img[:, :, 0]
|
247 |
+
### Otherwise we take 2 channels
|
248 |
+
except IndexError:
|
249 |
+
pass
|
250 |
+
# Another option will be equalizing the image
|
251 |
+
# img = cv2.equalizeHist(img.astype(np.uint8))
|
252 |
+
img = ((img-img.min())/(img.max()-img.min())*255)
|
253 |
+
### Normalize to values -1024 1024
|
254 |
+
img = normalize(img, 255)
|
255 |
+
# print(img.min(),img.max())
|
256 |
+
# Add color channel
|
257 |
+
img = img[None, :, :]
|
258 |
+
if tr is not None:
|
259 |
+
img = tr(img)
|
260 |
+
else:
|
261 |
+
raise Exception("You should pass a transformer to downsample the images")
|
262 |
+
return img
|
263 |
+
|
264 |
+
#### Applly colormap on image
|
265 |
+
def apply_colormap_on_image(org_im, activation, colormap_name, threshold=0.3,alpha=0.6):
|
266 |
+
"""
|
267 |
+
Apply heatmap on image
|
268 |
+
Args:
|
269 |
+
org_img (PIL img): Original image (224x224)
|
270 |
+
activation_map (numpy arr): Activation map (grayscale) 0-255 (224x224)
|
271 |
+
colormap_name (str): Name of the colormap (colormap_name)
|
272 |
+
threshold (float): threshold at which to overlay heatmap (threshold that anomaly must surpass in terms of probability)
|
273 |
+
alpha (float): adjust the intense in which the model predicts
|
274 |
+
Original source: https://github.com/utkuozbulak/pytorch-cnn-visualizations
|
275 |
+
|
276 |
+
Added thresholding to activations.
|
277 |
+
"""
|
278 |
+
### Grayscale_cam
|
279 |
+
grayscale_cam = copy.deepcopy(activation)
|
280 |
+
# Get colormap just color type
|
281 |
+
color_map = mpl_color_map.get_cmap(colormap_name)
|
282 |
+
# Like map the activation function to the color map
|
283 |
+
|
284 |
+
no_trans_heatmap = color_map(activation)
|
285 |
+
### Not_trans_heatmap output (224x224x4 channels) (HSV-alpha channels)
|
286 |
+
### H --> channel 0 H --> channel 1 H --> channel 2 alpha --> channel 3
|
287 |
|
288 |
+
# Change alpha channel in colormap to make sure original image is displayed deepcopy
|
289 |
+
alpha_channel = 3
|
290 |
+
heatmap = copy.copy(no_trans_heatmap)
|
291 |
+
heatmap[:, :, alpha_channel] = alpha
|
292 |
+
|
293 |
+
# set to fully transparent if there is a very low activation (if the activation map is lower than the threshold)
|
294 |
+
idx = (grayscale_cam <= threshold)
|
295 |
+
# convert to a 3d index the shape of the image (expand the image by arrays)
|
296 |
+
# Input shape 224x244 --- Output Shape 224x224x1
|
297 |
+
ignore_idx = np.expand_dims(np.zeros(grayscale_cam.shape, dtype=bool), 2)
|
298 |
+
|
299 |
+
### Idx is the four fimenation of the heatmap concatenate 224x224x3 with 224x224x1 ---> 224x224x4
|
300 |
+
idx = np.concatenate([ignore_idx]*3 + [np.expand_dims(idx, 2)], axis=2)
|
301 |
+
|
302 |
+
|
303 |
+
heatmap[idx] = 0
|
304 |
+
### Inputs 224x224x4
|
305 |
+
### Scale to a 255 integer and map to PIL image
|
306 |
+
heatmap = Image.fromarray((heatmap*255).astype(np.uint8))
|
307 |
+
### Color map activation scale to 255 PIL image
|
308 |
+
no_trans_heatmap = Image.fromarray((no_trans_heatmap*255).astype(np.uint8))
|
309 |
+
|
310 |
+
# Apply heatmap on image
|
311 |
+
### Create and RGBA image
|
312 |
+
heatmap_on_image = Image.new("RGBA", org_im.size)
|
313 |
+
### org_im PIL converted onto RGBA and overlapped with heatmap on image
|
314 |
+
heatmap_on_image = Image.alpha_composite(heatmap_on_image, org_im.convert('RGBA'))
|
315 |
+
### heatmap_on_image overlap with heatmap
|
316 |
+
heatmap_on_image = Image.alpha_composite(heatmap_on_image, heatmap)
|
317 |
+
return no_trans_heatmap, heatmap_on_image
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
def heatmap_core(image:np.array,pathologies:list,target:str,model_cmaps:list,threshold = 0.3, alpha = 0.8,obscureness = 0.8,fontsize=14)->plt:
|
322 |
+
"""
|
323 |
+
Returns the heatmap of the image
|
324 |
+
Args:
|
325 |
+
image (np.array): Numpy Array Image (224x224)
|
326 |
+
target (str): Pathology to select
|
327 |
+
model_cmaps (list): colors to heatmap
|
328 |
+
pathologies(list): List of pathologies
|
329 |
+
threshold (float): Threshold to be more exigent or less exigent with the zone in which you are looking for
|
330 |
+
alpha (float): the higher this value, the more intense is the colormaps
|
331 |
+
obscureness (float) : the mhigher is this value the darker are the color maps
|
332 |
+
fontsize (float): adjust the fontsize of the plot
|
333 |
+
Original source: https://github.com/utkuozbulak/pytorch-cnn-visualizations
|
334 |
+
Modifications by : ### TeamMIMICIV
|
335 |
+
|
336 |
+
Added thresholding to activations.
|
337 |
+
"""
|
338 |
+
|
339 |
+
#### Initializing models
|
340 |
+
models = OrderedDict()
|
341 |
+
cams = OrderedDict()
|
342 |
+
for model_name in ['densenet121-res224-mimic_nb', 'densenet121-res224-mimic_ch']:
|
343 |
+
#### Adding the models and cams to the OrderedDict structure
|
344 |
+
models,cams = takemodel(models,cams,weights=model_name)
|
345 |
+
### Get an image
|
346 |
+
input_tensor = torch.from_numpy(image).unsqueeze(0)
|
347 |
+
|
348 |
+
img = input_tensor.numpy()[0, 0, :, :]
|
349 |
img = (img / 1024.0 / 2.0) + 0.5
|
350 |
img = np.clip(img, 0, 1)
|
351 |
img = Image.fromarray(np.uint8(img * 255) , 'L')
|
|
|
|
|
|
|
352 |
|
353 |
+
# using the variable axs for multiple Axes
|
354 |
+
plt.figure(figsize=(10, 8))
|
355 |
+
|
356 |
+
i = 0
|
357 |
+
for model_name, model in models.items():
|
358 |
+
# get our model performance
|
359 |
+
with torch.no_grad():
|
360 |
+
out = model(input_tensor).cpu()
|
361 |
+
|
362 |
+
# reshape the dataset labels to match our model
|
363 |
+
# xrv.datasets.relabel_dataset(model.pathologies, d_pc)
|
364 |
+
|
365 |
+
# finds the index of the target based on the model pathologies
|
366 |
+
assert target in pathologies,"Pathology input not in pathology maps"
|
367 |
+
target_category = model.pathologies.index(target)
|
368 |
+
grayscale_cam = cams[model_name](input_tensor=input_tensor, target_category=target_category)
|
369 |
+
# In this example grayscale_cam has only one image in the batch:
|
370 |
+
grayscale_cam = grayscale_cam[0, :]
|
371 |
+
|
372 |
+
_, img = apply_colormap_on_image(img, grayscale_cam, model_cmaps[i].name, threshold=threshold,alpha=alpha)
|
373 |
+
|
374 |
+
# add plot to add the color to the axis
|
375 |
+
plt.plot(0, 0, '-', lw=6, color=model_cmaps[i](0.7), label=model_name)
|
376 |
+
|
377 |
+
# what did we predict?
|
378 |
+
prob = np.round(out[0].detach().numpy()[target_category], 4)
|
379 |
+
|
380 |
+
i += 1
|
381 |
+
|
382 |
+
plt.legend(fontsize=fontsize)
|
383 |
+
plt.imshow(img, cmap='bone')
|
384 |
+
plt.axis('off')
|
385 |
+
# plt.show()
|
386 |
+
return plt
|
387 |
+
|
388 |
+
|
389 |
+
def heatmap(img,target,threshold = 0.3, alpha = 0.8,obscureness = 0.8,fontsize=14):
|
390 |
+
"""
|
391 |
+
Returns the heatmap of the image
|
392 |
+
Args:
|
393 |
+
imgpath (str): Name of the image path
|
394 |
+
target (str): Pathology to select
|
395 |
|
396 |
+
threshold (float): Threshold to be more exigent or less exigent with the zone in which you are looking for
|
397 |
+
alpha (float): the higher this value, the more intense is the colormaps
|
398 |
+
obscureness (float) : the mhigher is this value the darker are the color maps
|
399 |
+
fontsize (float): adjust the fontsize of the plot
|
400 |
+
Original source: https://github.com/utkuozbulak/pytorch-cnn-visualizations
|
401 |
+
Modifications by : ### TeamMIMICIV
|
402 |
+
Added thresholding to activations.
|
403 |
+
"""
|
404 |
+
pathologies = ['Atelectasis', 'Consolidation', 'Pneumothorax','Edema', 'Effusion', 'Pneumonia', 'Cardiomegaly']
|
405 |
+
model_cmaps = [mpl_color_map.Purples, mpl_color_map.Greens_r]
|
406 |
+
tr = transforms.Compose(
|
407 |
+
[xrv.datasets.XRayCenterCrop(), xrv.datasets.XRayResizer(224, engine='cv2')]
|
408 |
+
)
|
409 |
+
image = read_image(img,tr=tr)
|
410 |
+
return heatmap_core(image,pathologies,target,model_cmaps,threshold = threshold, alpha = alpha,obscureness = obscureness,fontsize=fontsize)
|
411 |
+
|
412 |
+
|
413 |
+
#### Initializing models
|
414 |
+
def probtemp(image:np.array)->dict:
|
415 |
+
"""
|
416 |
+
Returns the output probabilities of two models
|
417 |
+
Args:
|
418 |
+
image (np.array): Numpy already scaled
|
419 |
+
"""
|
420 |
+
#### Initializing models
|
421 |
+
models = OrderedDict()
|
422 |
+
cams = OrderedDict()
|
423 |
+
|
424 |
+
for model_name in ['densenet121-res224-mimic_nb', 'densenet121-res224-mimic_ch']:
|
425 |
+
#### Adding the models and cams to the OrderedDict structure
|
426 |
+
models,cams = takemodel(models,cams,weights=model_name)
|
427 |
+
### Get an image
|
428 |
+
input_tensor = torch.from_numpy(image).unsqueeze(0)
|
429 |
|
430 |
+
img = input_tensor.numpy()[0, 0, :, :]
|
431 |
+
img = (img / 1024.0 / 2.0) + 0.5
|
432 |
+
img = np.clip(img, 0, 1)
|
433 |
+
img = Image.fromarray(np.uint8(img * 255) , 'L')
|
434 |
|
435 |
+
model_dics = {}
|
436 |
+
for model_name, model in models.items():
|
437 |
+
# get our model performance
|
438 |
+
with torch.no_grad():
|
439 |
+
out = model(input_tensor).cpu()
|
440 |
+
model_dics[model_name] = {key:value for (key,value) in zip(model.pathologies, out.detach().numpy()[0]) if len(key)>2}
|
441 |
+
return model_dics
|
442 |
+
def getprobs(img):
|
443 |
+
"""
|
444 |
+
Returns the heatmap of the image
|
445 |
+
Args:
|
446 |
+
imgpath (str): Name of the image path
|
447 |
+
target (str): Pathology to select
|
448 |
+
|
449 |
+
threshold (float): Threshold to be more exigent or less exigent with the zone in which you are looking for
|
450 |
+
alpha (float): the higher this value, the more intense is the colormaps
|
451 |
+
obscureness (float) : the mhigher is this value the darker are the color maps
|
452 |
+
fontsize (float): adjust the fontsize of the plot
|
453 |
+
Original source: https://github.com/utkuozbulak/pytorch-cnn-visualizations
|
454 |
+
Modifications by : ### TeamMIMICIV
|
455 |
+
Added thresholding to activations.
|
456 |
+
"""
|
457 |
+
pathologies = ['Atelectasis', 'Consolidation', 'Pneumothorax','Edema', 'Effusion', 'Pneumonia', 'Cardiomegaly']
|
458 |
+
tr = transforms.Compose(
|
459 |
+
[xrv.datasets.XRayCenterCrop(), xrv.datasets.XRayResizer(224, engine='cv2')]
|
460 |
+
)
|
461 |
+
image = read_image(img,tr=tr)
|
462 |
+
return probtemp(image)
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
|
467 |
+
#### MORE FUNCTIONS.PY
|
468 |
+
### Get the probability of models
|
469 |
+
def sortedmodels(probs,model_name):
|
470 |
+
"""
|
471 |
+
Sorts the probability model
|
472 |
+
Args:
|
473 |
+
probs (dict) : dictionary of model probabilities
|
474 |
+
model_name (str) : name of the model
|
475 |
+
"""
|
476 |
+
### Probability of the model
|
477 |
+
promodels = probs[model_name]
|
478 |
+
# Sort results by the descending probability order
|
479 |
+
return dict(sorted(promodels.items(), key=operator.itemgetter(1),reverse=True))
|
480 |
+
def disprobs(model_probs,model_name,N):
|
481 |
+
"""
|
482 |
+
Displays the probability models and Sorts the probability model
|
483 |
+
Args:
|
484 |
+
model_probs (dict) : dictionary of model probabilities
|
485 |
+
model_name (str) : name of the model
|
486 |
+
"""
|
487 |
+
exp1 = st.expander(f"Probabilities for {model_name}")
|
488 |
+
pr = sortedmodels(model_probs,model_name)
|
489 |
+
for cnt,(key,value) in enumerate(pr.items()):
|
490 |
+
if cnt==N:
|
491 |
+
break
|
492 |
+
exp1.metric(label=key, value=str(cnt+1), delta=str(value))
|
493 |
+
|
494 |
+
def getfile(uploaded_file=None):
|
495 |
+
"""
|
496 |
+
Get the file uploaded
|
497 |
+
"""
|
498 |
+
if uploaded_file is not None:
|
499 |
+
return extensionimages(uploaded_file)
|
500 |
+
return extensionimages("example.dcm")
|
501 |
### Error in case we do not find compounds
|
502 |
def error(option):
|
503 |
option = str(option).replace(" ","%20")
|
504 |
+
par3 = f'https://www.ebi.ac.uk/chembl/g/#search_results/all/query={option})'
|
505 |
+
par2 = "<a href = {} >".format(par3)
|
506 |
+
par =par2 +"ChEBML" + "</a>"
|
507 |
+
|
508 |
+
st.markdown("<p style='text-align: center;'>We have not found compounds for this illness; for more information visit this link: {}</p>".format(par), unsafe_allow_html=True)
|
509 |
+
|
510 |
+
def main():
|
511 |
+
|
512 |
+
sys.path.insert(0,"..")
|
513 |
+
### Title
|
514 |
+
st.set_page_config(layout="wide")
|
515 |
+
header()
|
516 |
+
### Uploader
|
517 |
+
uploaded_file = st.file_uploader("Choose an X-Ray image to detect anomalies of the chest (the file must be a dicom extension or jpg)",)
|
518 |
+
#### Get the image
|
519 |
+
|
520 |
+
imgdef = getfile(uploaded_file)
|
521 |
+
__,col4,_,col5,_,col6,__ = st.columns((0.1,1,0.2,2.5,0.2,1,0.1))
|
522 |
+
col5.markdown("<h3 style='text-align: center;'>Input Image</h3>",unsafe_allow_html=True)
|
523 |
+
with col5:
|
524 |
+
### Plot the input image
|
525 |
+
fig, ax = plt.subplots()
|
526 |
+
ax.imshow(imgdef,cmap="gray")
|
527 |
+
st.pyplot(fig=fig)
|
528 |
+
# Printing the possibility of having anomalies
|
529 |
+
|
530 |
+
__,col1,_,col3,_,col2,__ = st.columns((0.1,1,0.2,2.5,0.2,1,0.1))
|
531 |
+
col3.markdown("<h3 style='text-align: center;'>Anomaly Detection</h3>",unsafe_allow_html=True)
|
532 |
+
model_probs = getprobs(imgdef)
|
533 |
+
option_anomaly,threshold,colors,obscureness,option,weight_cutoff,logp_cutoff,NumHDonors_cutoff,NumHAcceptors_cutoff,max_phase,N = controllers2(model_probs)
|
534 |
+
### MODEL 1
|
535 |
+
with col1:
|
536 |
+
disprobs(model_probs,model_names[0],N)
|
537 |
+
### MODEL_2
|
538 |
+
with col2:
|
539 |
+
disprobs(model_probs,model_names[1],N)
|
540 |
+
|
541 |
+
### ANOMALY HEATMAP
|
542 |
+
with col3:
|
543 |
+
plot = heatmap(imgdef,option_anomaly,threshold,colors,obscureness,14)
|
544 |
+
st.pyplot(plot)
|
545 |
+
df = getdrugs(option,max_phase)
|
546 |
+
|
547 |
+
st.markdown("<h3 style='text-align: center;'>Compounds for {}</h3>".format(option),unsafe_allow_html=True)
|
548 |
+
__,col10,col11,_,_,col12,__ = st.columns((0.1,0.8,2.5,0.2,0.2,1,0.1))
|
549 |
+
|
550 |
+
### TREATMENT FILTERING
|
551 |
+
if df is not None:
|
552 |
+
|
553 |
+
#### Filter dataframe by controllers
|
554 |
+
df_result = df[df["mol_weight"] < weight_cutoff]
|
555 |
+
df_result2 = df_result[df_result["Logp"] < logp_cutoff]
|
556 |
+
df_result3 = df_result2[df_result2["Donnors"] < NumHDonors_cutoff]
|
557 |
+
df_result4 = df_result3[df_result3["Acceptors"] < NumHAcceptors_cutoff]
|
558 |
+
|
559 |
+
|
560 |
+
|
561 |
+
if len(df_result4)==0:
|
562 |
+
|
563 |
+
error(option)
|
564 |
+
else:
|
565 |
+
raw_html = mols2grid.display(df_result, mapping={"smiles": "SMILES","pref_name":"Name","Acceptors":"Acceptors","Donnors":"Donnors","Logp":"Logp","mol_weight":"mol_weight"},
|
566 |
+
subset=["img","Name"],tooltip=["Name","Acceptors","Donnors","Logp","mol_weight"],tooltip_placement="top",tooltip_trigger="click hover")._repr_html_()
|
567 |
+
with col11:
|
568 |
+
|
569 |
+
components.html(raw_html, width=900, height=900, scrolling=True)
|
570 |
+
#### We do not find compounds for the anomaly
|
571 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
|
573 |
error(option)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
|
575 |
+
if __name__=="__main__":
|
576 |
+
main()
|
requirements.txt
CHANGED
@@ -1,105 +1,21 @@
|
|
1 |
-
|
2 |
-
mols2grid
|
3 |
-
opencv-python-headless
|
4 |
-
altair==4.1.0
|
5 |
-
argcomplete==1.12.3
|
6 |
-
argon2-cffi==21.1.0
|
7 |
-
astor==0.8.1
|
8 |
-
attrs==21.2.0
|
9 |
-
backcall==0.2.0
|
10 |
-
backports.zoneinfo==0.2.1
|
11 |
-
base58==2.1.1
|
12 |
-
bleach==4.1.0
|
13 |
-
blinker==1.4
|
14 |
-
Bottleneck==1.3.2
|
15 |
-
cachetools==4.2.4
|
16 |
-
certifi==2021.10.8
|
17 |
-
cffi==1.15.0
|
18 |
-
charset-normalizer==2.0.9
|
19 |
-
chembl-webresource-client==0.10.7
|
20 |
-
click==7.1.2
|
21 |
-
colorama==0.4.4
|
22 |
-
debugpy==1.5.1
|
23 |
-
decorator==5.1.0
|
24 |
-
defusedxml==0.7.1
|
25 |
easydict==1.9
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
importlib-metadata==4.8.2
|
33 |
-
importlib-resources==5.4.0
|
34 |
-
ipykernel==6.6.0
|
35 |
-
ipython==7.30.1
|
36 |
-
ipython-genutils==0.2.0
|
37 |
-
ipywidgets==7.6.5
|
38 |
-
itsdangerous==2.0.1
|
39 |
-
jedi==0.18.1
|
40 |
-
jsonschema==4.2.1
|
41 |
-
jupyter-client==7.1.0
|
42 |
-
jupyter-core==4.9.1
|
43 |
-
jupyterlab-pygments==0.1.2
|
44 |
-
jupyterlab-widgets==1.0.2
|
45 |
-
matplotlib-inline==0.1.3
|
46 |
-
mistune==0.8.4
|
47 |
-
mkl-fft==1.3.1
|
48 |
-
mkl-service==2.4.0
|
49 |
-
munkres==1.1.4
|
50 |
-
nbclient==0.5.9
|
51 |
-
nbconvert==6.3.0
|
52 |
-
nbformat==5.1.3
|
53 |
-
nest-asyncio==1.5.4
|
54 |
-
networkx==2.6.3
|
55 |
-
notebook==6.4.6
|
56 |
-
olefile==0.46
|
57 |
-
pandocfilters==1.5.0
|
58 |
-
parso==0.8.3
|
59 |
-
pickleshare==0.7.5
|
60 |
Pillow==8.4.0
|
61 |
-
prometheus-client==0.12.0
|
62 |
-
prompt-toolkit==3.0.23
|
63 |
-
protobuf==3.19.1
|
64 |
-
pyarrow==6.0.1
|
65 |
-
pycparser==2.21
|
66 |
-
pydeck==0.7.1
|
67 |
pydicom==2.2.2
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
pyrsistent==0.18.0
|
72 |
-
pytz==2021.3
|
73 |
-
pytz-deprecation-shim==0.1.0.post0
|
74 |
-
PyWavelets==1.2.0
|
75 |
-
PyYAML==6.0
|
76 |
-
pyzmq==22.3.0
|
77 |
-
requests==2.26.0
|
78 |
-
requests-cache==0.7.5
|
79 |
-
scikit-image==0.19.0
|
80 |
scipy==1.7.3
|
81 |
-
|
82 |
-
smmap==5.0.0
|
83 |
streamlit==1.2.0
|
84 |
-
|
85 |
-
testpath==0.5.0
|
86 |
-
tifffile==2021.11.2
|
87 |
-
toml==0.10.2
|
88 |
-
toolz==0.11.2
|
89 |
torch==1.10.0
|
|
|
90 |
torchvision==0.11.1
|
91 |
torchxrayvision==0.0.32
|
92 |
-
tqdm==4.62.3
|
93 |
-
traitlets==5.1.1
|
94 |
-
typing_extensions==4.0.1
|
95 |
-
tzdata==2021.5
|
96 |
-
tzlocal==4.1
|
97 |
-
url-normalize==1.4.3
|
98 |
-
urllib3==1.26.7
|
99 |
-
validators==0.18.2
|
100 |
-
watchdog==2.1.6
|
101 |
-
wcwidth==0.2.5
|
102 |
-
webencodings==0.5.1
|
103 |
-
widgetsnbextension==3.5.2
|
104 |
-
wincertstore==0.2
|
105 |
-
zipp==3.6.0
|
|
|
1 |
+
chembl_webresource_client==0.10.7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
easydict==1.9
|
3 |
+
grad_cam==1.3.5
|
4 |
+
matplotlib==3.5.0
|
5 |
+
mols2grid==0.1.0
|
6 |
+
numpy==1.21.2
|
7 |
+
opencv_python==4.5.4.60
|
8 |
+
pandas==1.3.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
Pillow==8.4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
pydicom==2.2.2
|
11 |
+
rdkit==2009.Q1-1
|
12 |
+
scikit_image==0.19.0
|
13 |
+
scikit_learn==1.0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
scipy==1.7.3
|
15 |
+
skimage==0.0
|
|
|
16 |
streamlit==1.2.0
|
17 |
+
tensorboardX==2.4.1
|
|
|
|
|
|
|
|
|
18 |
torch==1.10.0
|
19 |
+
torchsummary==1.5.1
|
20 |
torchvision==0.11.1
|
21 |
torchxrayvision==0.0.32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|