|
import os |
|
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1' |
|
from typing import IO |
|
import zipfile |
|
import json |
|
import io |
|
from typing import * |
|
from pathlib import Path |
|
import re |
|
from PIL import Image, PngImagePlugin |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
from .tools import timeit |
|
|
|
|
|
def save_glb( |
|
save_path: Union[str, os.PathLike], |
|
vertices: np.ndarray, |
|
faces: np.ndarray, |
|
vertex_uvs: np.ndarray, |
|
color_texture: np.ndarray, |
|
normal_texture: np.ndarray = None, |
|
): |
|
import trimesh |
|
import trimesh.visual |
|
from PIL import Image |
|
|
|
trimesh.Trimesh( |
|
vertices=vertices, |
|
faces=faces, |
|
visual = trimesh.visual.texture.TextureVisuals( |
|
uv=vertex_uvs, |
|
material=trimesh.visual.material.PBRMaterial( |
|
baseColorTexture=Image.fromarray(color_texture), |
|
normalTexture=Image.fromarray(normal_texture), |
|
metallicFactor=0.5, |
|
roughnessFactor=1.0 |
|
) |
|
), |
|
process=False |
|
).export(save_path) |
|
|
|
|
|
def save_ply( |
|
save_path: Union[str, os.PathLike], |
|
vertices: np.ndarray, |
|
faces: np.ndarray, |
|
vertex_colors: np.ndarray, |
|
vertex_normals: Optional[np.ndarray] = None, |
|
): |
|
import trimesh |
|
import trimesh.visual |
|
from PIL import Image |
|
|
|
trimesh.Trimesh( |
|
vertices=vertices, |
|
faces=faces, |
|
vertex_colors=vertex_colors, |
|
vertex_normals=vertex_normals, |
|
process=False |
|
).export(save_path) |
|
|
|
|
|
def read_image(path: Union[str, os.PathLike, IO]) -> np.ndarray: |
|
""" |
|
Read a image, return uint8 RGB array of shape (H, W, 3). |
|
""" |
|
if isinstance(path, (str, os.PathLike)): |
|
data = Path(path).read_bytes() |
|
else: |
|
data = path.read() |
|
image = cv2.cvtColor(cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) |
|
return image |
|
|
|
|
|
def write_image(path: Union[str, os.PathLike, IO], image: np.ndarray, quality: int = 95): |
|
""" |
|
Write a image, input uint8 RGB array of shape (H, W, 3). |
|
""" |
|
data = cv2.imencode('.jpg', cv2.cvtColor(image, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_JPEG_QUALITY, quality])[1].tobytes() |
|
if isinstance(path, (str, os.PathLike)): |
|
Path(path).write_bytes(data) |
|
else: |
|
path.write(data) |
|
|
|
|
|
def read_depth(path: Union[str, os.PathLike, IO]) -> Tuple[np.ndarray, float]: |
|
""" |
|
Read a depth image, return float32 depth array of shape (H, W). |
|
""" |
|
if isinstance(path, (str, os.PathLike)): |
|
data = Path(path).read_bytes() |
|
else: |
|
data = path.read() |
|
pil_image = Image.open(io.BytesIO(data)) |
|
near = float(pil_image.info.get('near')) |
|
far = float(pil_image.info.get('far')) |
|
unit = float(pil_image.info.get('unit')) if 'unit' in pil_image.info else None |
|
depth = np.array(pil_image) |
|
mask_nan, mask_inf = depth == 0, depth == 65535 |
|
depth = (depth.astype(np.float32) - 1) / 65533 |
|
depth = near ** (1 - depth) * far ** depth |
|
depth[mask_nan] = np.nan |
|
depth[mask_inf] = np.inf |
|
return depth, unit |
|
|
|
|
|
def write_depth( |
|
path: Union[str, os.PathLike, IO], |
|
depth: np.ndarray, |
|
unit: float = None, |
|
max_range: float = 1e5, |
|
compression_level: int = 7, |
|
): |
|
""" |
|
Encode and write a depth image as 16-bit PNG format. |
|
### Parameters: |
|
- `path: Union[str, os.PathLike, IO]` |
|
The file path or file object to write to. |
|
- `depth: np.ndarray` |
|
The depth array, float32 array of shape (H, W). |
|
May contain `NaN` for invalid values and `Inf` for infinite values. |
|
- `unit: float = None` |
|
The unit of the depth values. |
|
|
|
Depth values are encoded as follows: |
|
- 0: unknown |
|
- 1 ~ 65534: depth values in logarithmic |
|
- 65535: infinity |
|
|
|
metadata is stored in the PNG file as text fields: |
|
- `near`: the minimum depth value |
|
- `far`: the maximum depth value |
|
- `unit`: the unit of the depth values (optional) |
|
""" |
|
mask_values, mask_nan, mask_inf = np.isfinite(depth), np.isnan(depth),np.isinf(depth) |
|
|
|
depth = depth.astype(np.float32) |
|
mask_finite = depth |
|
near = max(depth[mask_values].min(), 1e-5) |
|
far = max(near * 1.1, min(depth[mask_values].max(), near * max_range)) |
|
depth = 1 + np.round((np.log(np.nan_to_num(depth, nan=0).clip(near, far) / near) / np.log(far / near)).clip(0, 1) * 65533).astype(np.uint16) |
|
depth[mask_nan] = 0 |
|
depth[mask_inf] = 65535 |
|
|
|
pil_image = Image.fromarray(depth) |
|
pnginfo = PngImagePlugin.PngInfo() |
|
pnginfo.add_text('near', str(near)) |
|
pnginfo.add_text('far', str(far)) |
|
if unit is not None: |
|
pnginfo.add_text('unit', str(unit)) |
|
pil_image.save(path, pnginfo=pnginfo, compress_level=compression_level) |
|
|
|
|
|
def read_segmentation(path: Union[str, os.PathLike, IO]) -> Tuple[np.ndarray, Dict[str, int]]: |
|
""" |
|
Read a segmentation mask |
|
### Parameters: |
|
- `path: Union[str, os.PathLike, IO]` |
|
The file path or file object to read from. |
|
### Returns: |
|
- `Tuple[np.ndarray, Dict[str, int]]` |
|
A tuple containing: |
|
- `mask`: uint8 or uint16 numpy.ndarray of shape (H, W). |
|
- `labels`: Dict[str, int]. The label mapping, a dictionary of {label_name: label_id}. |
|
""" |
|
if isinstance(path, (str, os.PathLike)): |
|
data = Path(path).read_bytes() |
|
else: |
|
data = path.read() |
|
pil_image = Image.open(io.BytesIO(data)) |
|
labels = json.loads(pil_image.info['labels']) if 'labels' in pil_image.info else None |
|
mask = np.array(pil_image) |
|
return mask, labels |
|
|
|
|
|
def write_segmentation(path: Union[str, os.PathLike, IO], mask: np.ndarray, labels: Dict[str, int] = None, compression_level: int = 7): |
|
""" |
|
Write a segmentation mask and label mapping, as PNG format. |
|
### Parameters: |
|
- `path: Union[str, os.PathLike, IO]` |
|
The file path or file object to write to. |
|
- `mask: np.ndarray` |
|
The segmentation mask, uint8 or uint16 array of shape (H, W). |
|
- `labels: Dict[str, int] = None` |
|
The label mapping, a dictionary of {label_name: label_id}. |
|
- `compression_level: int = 7` |
|
The compression level for PNG compression. |
|
""" |
|
assert mask.dtype == np.uint8 or mask.dtype == np.uint16, f"Unsupported dtype {mask.dtype}" |
|
pil_image = Image.fromarray(mask) |
|
pnginfo = PngImagePlugin.PngInfo() |
|
if labels is not None: |
|
labels_json = json.dumps(labels, ensure_ascii=True, separators=(',', ':')) |
|
pnginfo.add_text('labels', labels_json) |
|
pil_image.save(path, pnginfo=pnginfo, compress_level=compression_level) |
|
|
|
|
|
|
|
def read_normal(path: Union[str, os.PathLike, IO]) -> np.ndarray: |
|
""" |
|
Read a normal image, return float32 normal array of shape (H, W, 3). |
|
""" |
|
if isinstance(path, (str, os.PathLike)): |
|
data = Path(path).read_bytes() |
|
else: |
|
data = path.read() |
|
normal = cv2.cvtColor(cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB) |
|
mask_nan = np.all(normal == 0, axis=-1) |
|
normal = (normal.astype(np.float32) / 65535 - 0.5) * [2.0, -2.0, -2.0] |
|
normal = normal / (np.sqrt(np.square(normal[..., 0]) + np.square(normal[..., 1]) + np.square(normal[..., 2])) + 1e-12) |
|
normal[mask_nan] = np.nan |
|
return normal |
|
|
|
|
|
def write_normal(path: Union[str, os.PathLike, IO], normal: np.ndarray, compression_level: int = 7) -> np.ndarray: |
|
""" |
|
Write a normal image, input float32 normal array of shape (H, W, 3). |
|
""" |
|
mask_nan = np.isnan(normal).any(axis=-1) |
|
normal = ((normal * [0.5, -0.5, -0.5] + 0.5).clip(0, 1) * 65535).astype(np.uint16) |
|
normal[mask_nan] = 0 |
|
data = cv2.imencode('.png', cv2.cvtColor(normal, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_PNG_COMPRESSION, compression_level])[1].tobytes() |
|
if isinstance(path, (str, os.PathLike)): |
|
Path(path).write_bytes(data) |
|
else: |
|
path.write(data) |
|
|
|
|
|
def read_meta(path: Union[str, os.PathLike, IO]) -> Dict[str, Any]: |
|
return json.loads(Path(path).read_text()) |
|
|
|
def write_meta(path: Union[str, os.PathLike, IO], meta: Dict[str, Any]): |
|
Path(path).write_text(json.dumps(meta)) |