|
import os |
|
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1' |
|
from pathlib import Path |
|
import sys |
|
if (_package_root := str(Path(__file__).absolute().parents[2])) not in sys.path: |
|
sys.path.insert(0, _package_root) |
|
import json |
|
from pathlib import Path |
|
from typing import * |
|
import itertools |
|
import warnings |
|
|
|
import click |
|
|
|
|
|
@click.command(context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, help='Inference script for wrapped baselines methods') |
|
@click.option('--baseline', 'baseline_code_path', required=True, type=click.Path(), help='Path to the baseline model python code.') |
|
@click.option('--input', '-i', 'input_path', type=str, required=True, help='Input image or folder') |
|
@click.option('--output', '-o', 'output_path', type=str, default='./output', help='Output folder') |
|
@click.option('--size', 'image_size', type=int, default=None, help='Resize input image') |
|
@click.option('--skip', is_flag=True, help='Skip existing output') |
|
@click.option('--maps', 'save_maps_', is_flag=True, help='Save output point / depth maps') |
|
@click.option('--ply', 'save_ply_', is_flag=True, help='Save mesh in PLY format') |
|
@click.option('--glb', 'save_glb_', is_flag=True, help='Save mesh in GLB format') |
|
@click.option('--threshold', type=float, default=0.03, help='Depth edge detection threshold for saving mesh') |
|
@click.pass_context |
|
def main(ctx: click.Context, baseline_code_path: str, input_path: str, output_path: str, image_size: int, skip: bool, save_maps_, save_ply_: bool, save_glb_: bool, threshold: float): |
|
|
|
import cv2 |
|
import numpy as np |
|
from tqdm import tqdm |
|
import torch |
|
import utils3d |
|
|
|
from moge.utils.io import save_ply, save_glb |
|
from moge.utils.geometry_numpy import intrinsics_to_fov_numpy |
|
from moge.utils.vis import colorize_depth, colorize_depth_affine, colorize_disparity |
|
from moge.utils.tools import key_average, flatten_nested_dict, timeit, import_file_as_module |
|
from moge.test.baseline import MGEBaselineInterface |
|
|
|
|
|
module = import_file_as_module(baseline_code_path, Path(baseline_code_path).stem) |
|
baseline_cls: Type[MGEBaselineInterface] = getattr(module, 'Baseline') |
|
baseline : MGEBaselineInterface = baseline_cls.load.main(ctx.args, standalone_mode=False) |
|
|
|
|
|
include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG'] |
|
if Path(input_path).is_dir(): |
|
image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices))) |
|
else: |
|
image_paths = [Path(input_path)] |
|
|
|
if not any([save_maps_, save_glb_, save_ply_]): |
|
warnings.warn('No output format specified. Defaults to saving maps only. Please use "--maps", "--glb", or "--ply" to specify the output.') |
|
save_maps_ = True |
|
|
|
for image_path in (pbar := tqdm(image_paths, desc='Inference', disable=len(image_paths) <= 1)): |
|
|
|
image_np = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB) |
|
height, width = image_np.shape[:2] |
|
if image_size is not None and max(image_np.shape[:2]) > image_size: |
|
height, width = min(image_size, int(image_size * height / width)), min(image_size, int(image_size * width / height)) |
|
image_np = cv2.resize(image_np, (width, height), cv2.INTER_AREA) |
|
image = torch.from_numpy(image_np.astype(np.float32) / 255.0).permute(2, 0, 1).to(baseline.device) |
|
|
|
|
|
torch.cuda.synchronize() |
|
with torch.inference_mode(), (timer := timeit('Inference', verbose=False, average=True)): |
|
output = baseline.infer(image) |
|
torch.cuda.synchronize() |
|
|
|
inference_time = timer.average_time |
|
pbar.set_postfix({'average inference time': f'{inference_time:.3f}s'}) |
|
|
|
|
|
save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem) |
|
if skip and save_path.exists(): |
|
continue |
|
save_path.mkdir(parents=True, exist_ok=True) |
|
|
|
if save_maps_: |
|
cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)) |
|
|
|
if 'mask' in output: |
|
mask = output['mask'].cpu().numpy() |
|
cv2.imwrite(str(save_path /'mask.png'), (mask * 255).astype(np.uint8)) |
|
|
|
for k in ['points_metric', 'points_scale_invariant', 'points_affine_invariant']: |
|
if k in output: |
|
points = output[k].cpu().numpy() |
|
cv2.imwrite(str(save_path / f'{k}.exr'), cv2.cvtColor(points, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT]) |
|
|
|
for k in ['depth_metric', 'depth_scale_invariant', 'depth_affine_invariant', 'disparity_affine_invariant']: |
|
if k in output: |
|
depth = output[k].cpu().numpy() |
|
cv2.imwrite(str(save_path / f'{k}.exr'), depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT]) |
|
if k in ['depth_metric', 'depth_scale_invariant']: |
|
depth_vis = colorize_depth(depth) |
|
elif k == 'depth_affine_invariant': |
|
depth_vis = colorize_depth_affine(depth) |
|
elif k == 'disparity_affine_invariant': |
|
depth_vis = colorize_disparity(depth) |
|
cv2.imwrite(str(save_path / f'{k}_vis.png'), cv2.cvtColor(depth_vis, cv2.COLOR_RGB2BGR)) |
|
|
|
if 'intrinsics' in output: |
|
intrinsics = output['intrinsics'].cpu().numpy() |
|
fov_x, fov_y = intrinsics_to_fov_numpy(intrinsics) |
|
with open(save_path / 'fov.json', 'w') as f: |
|
json.dump({ |
|
'fov_x': float(np.rad2deg(fov_x)), |
|
'fov_y': float(np.rad2deg(fov_y)), |
|
'intrinsics': intrinsics.tolist() |
|
}, f, indent=4) |
|
|
|
|
|
if save_ply_ or save_glb_: |
|
assert any(k in output for k in ['points_metric', 'points_scale_invariant', 'points_affine_invariant']), 'No point map found in output' |
|
points = next(output[k] for k in ['points_metric', 'points_scale_invariant', 'points_affine_invariant'] if k in output).cpu().numpy() |
|
mask = output['mask'] if 'mask' in output else np.ones_like(points[..., 0], dtype=bool) |
|
normals, normals_mask = utils3d.numpy.points_to_normals(points, mask=mask) |
|
faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh( |
|
points, |
|
image_np.astype(np.float32) / 255, |
|
utils3d.numpy.image_uv(width=width, height=height), |
|
mask=mask & ~(utils3d.numpy.depth_edge(depth, rtol=threshold, mask=mask) & utils3d.numpy.normals_edge(normals, tol=5, mask=normals_mask)), |
|
tri=True |
|
) |
|
|
|
|
|
|
|
vertices, vertex_uvs = vertices * [1, -1, -1], vertex_uvs * [1, -1] + [0, 1] |
|
|
|
if save_glb_: |
|
save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image_np) |
|
|
|
if save_ply_: |
|
save_ply(save_path / 'mesh.ply', vertices, faces, vertex_colors) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|