Robert commited on
Commit
8fe5a80
1 Parent(s): 2827202

Small calculation fixes. Current exact match: 0.02, F1-score: 0.12

Browse files
Files changed (2) hide show
  1. base_model/main.py +2 -2
  2. base_model/retriever.py +4 -6
base_model/main.py CHANGED
@@ -15,6 +15,6 @@ if __name__ == '__main__':
15
  print() # Newline
16
 
17
  # Compute overall performance
18
- exact_match, f1_score, total = r.evaluate()
19
- print(f"Exact match: {exact_match} / {total}\n"
20
  f"F1-score: {f1_score:.02f}")
 
15
  print() # Newline
16
 
17
  # Compute overall performance
18
+ exact_match, f1_score = r.evaluate()
19
+ print(f"Exact match: {exact_match:.02f}\n"
20
  f"F1-score: {f1_score:.02f}")
base_model/retriever.py CHANGED
@@ -7,7 +7,6 @@ from transformers import (
7
  from datasets import load_dataset
8
  import torch
9
  import os.path
10
- import numpy
11
 
12
  import evaluate
13
 
@@ -125,9 +124,8 @@ class Retriever:
125
  entire dataset.
126
 
127
  Returns:
128
- int: overall exact match
129
  float: overall F1-score
130
- int: total amount of questions handled
131
  """
132
  questions_ds = load_dataset("GroNLP/ik-nlp-22_slp", name="questions")['test']
133
  questions = questions_ds['question']
@@ -142,7 +140,7 @@ class Retriever:
142
  scores += score[0]
143
  predictions.append(result['text'][0])
144
 
145
- exact_match = max((evaluate.compute_exact_match(predictions[i], answers[i])) for i in range(len(answers)))
146
- f1_score = max((evaluate.compute_f1(predictions[i], answers[i])) for i in range(len(answers)))
147
 
148
- return exact_match, f1_score, len(answers)
 
7
  from datasets import load_dataset
8
  import torch
9
  import os.path
 
10
 
11
  import evaluate
12
 
 
124
  entire dataset.
125
 
126
  Returns:
127
+ float: overall exact match
128
  float: overall F1-score
 
129
  """
130
  questions_ds = load_dataset("GroNLP/ik-nlp-22_slp", name="questions")['test']
131
  questions = questions_ds['question']
 
140
  scores += score[0]
141
  predictions.append(result['text'][0])
142
 
143
+ exact_matches = [evaluate.compute_exact_match(predictions[i], answers[i]) for i in range(len(answers))]
144
+ f1_scores = [evaluate.compute_f1(predictions[i], answers[i]) for i in range(len(answers))]
145
 
146
+ return sum(exact_matches) / len(exact_matches), sum(f1_scores) / len(f1_scores)