|
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, \ |
|
DPRQuestionEncoder, DPRQuestionEncoderTokenizer |
|
from datasets import load_dataset |
|
import torch |
|
|
|
|
|
class Retriever(): |
|
"""A class used to retrieve relevant documents based on some query. |
|
based on https://huggingface.co/docs/datasets/faiss_es#faiss. |
|
""" |
|
|
|
def __init__(self, dataset: str = "GroNLP/ik-nlp-22_slp") -> None: |
|
"""Initialize the retriever |
|
|
|
Args: |
|
dataset (str, optional): The dataset to train on. Assumes the |
|
information is stored in a column named 'text'. Defaults to |
|
"GroNLP/ik-nlp-22_slp". |
|
""" |
|
torch.set_grad_enabled(False) |
|
|
|
|
|
self.ctx_encoder = DPRContextEncoder.from_pretrained( |
|
"facebook/dpr-ctx_encoder-single-nq-base") |
|
self.ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained( |
|
"facebook/dpr-ctx_encoder-single-nq-base") |
|
|
|
|
|
self.q_encoder = DPRQuestionEncoder.from_pretrained( |
|
"facebook/dpr-question_encoder-single-nq-base") |
|
self.q_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( |
|
"facebook/dpr-question_encoder-single-nq-base") |
|
|
|
|
|
self.dataset = self.__init_dataset(dataset) |
|
|
|
def __init_dataset(self, dataset: str): |
|
"""Loads the dataset and adds FAISS embeddings. |
|
|
|
Args: |
|
dataset (str): A HuggingFace dataset name. |
|
|
|
Returns: |
|
Dataset: A dataset with a new column 'embeddings' containing FAISS |
|
embeddings. |
|
""" |
|
|
|
|
|
|
|
ds = load_dataset(dataset, name='paragraphs')['train'] |
|
|
|
def embed(row): |
|
|
|
p = row['text'] |
|
tok = self.ctx_tokenizer(p, return_tensors='pt', truncation=True) |
|
enc = self.ctx_encoder(**tok)[0][0].numpy() |
|
return {'embeddings': enc} |
|
|
|
|
|
ds_with_embeddings = ds.map(embed) |
|
|
|
|
|
ds_with_embeddings.add_faiss_index(column='embeddings') |
|
return ds_with_embeddings |
|
|
|
def retrieve(self, query: str, k: int = 5): |
|
"""Retrieve the top k matches for a search query. |
|
|
|
Args: |
|
query (str): A search query |
|
k (int, optional): The number of documents to retrieve. Defaults to |
|
5. |
|
|
|
Returns: |
|
tuple: A tuple of lists of scores and results. |
|
""" |
|
|
|
def embed(q): |
|
|
|
tok = self.q_tokenizer(q, return_tensors='pt', truncation=True) |
|
return self.q_encoder(**tok)[0][0].numpy() |
|
|
|
question_embedding = embed(query) |
|
scores, results = self.dataset.get_nearest_examples( |
|
'embeddings', question_embedding, k=k) |
|
return scores, results |
|
|