RufusRubin777 commited on
Commit
eb0fa3b
1 Parent(s): 5641add

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -38
app.py CHANGED
@@ -16,82 +16,75 @@ def load_models():
16
 
17
  RAG, model, processor = load_models()
18
 
19
- # Function for OCR extraction
20
- def extract_text(image):
21
  text_query = "Extract all the text in Sanskrit and English from the image."
22
-
23
  # Prepare message for Qwen model
24
- messages = [
25
- {
26
- "role": "user",
27
  "content": [
28
- {"type": "image", "image": image},
29
- {"type": "text", "text": text_query},
30
- ],
31
- }
32
  ]
33
-
34
  # Process the image
35
  text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
36
  image_inputs, video_inputs = process_vision_info(messages)
37
  inputs = processor(
38
  text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
39
  ).to("cpu") # Use CPU
40
-
41
  # Generate text
42
  with torch.no_grad():
43
  generated_ids = model.generate(**inputs, max_new_tokens=2000)
44
  generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
45
- extracted_text = processor.batch_decode(
46
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
47
- )[0]
48
-
49
  return extracted_text
50
 
51
- # Function for keyword search in extracted text
52
- def search_text(extracted_text, keyword):
53
  keyword_lower = keyword.lower()
54
  sentences = extracted_text.split('. ')
55
  matched_sentences = []
56
-
57
  for sentence in sentences:
58
  if keyword_lower in sentence.lower():
59
- highlighted_sentence = re.sub(
60
- f'({re.escape(keyword)})', r'<mark>\1</mark>', sentence, flags=re.IGNORECASE
61
- )
62
  matched_sentences.append(highlighted_sentence)
63
-
64
- return matched_sentences
65
 
66
  # Gradio App
67
- def extract_text_app(image):
68
- extracted_text = extract_text(image)
69
  return extracted_text
70
 
71
- def search_text_app(extracted_text, keyword):
72
- search_results = search_text(extracted_text, keyword)
73
- search_results_str = "<br>".join(search_results) if search_results else "No matches found."
74
  return search_results_str
75
 
76
  # Gradio Interface
77
  with gr.Blocks() as iface:
78
- extracted_text = gr.State()
79
-
80
  with gr.Row():
81
  with gr.Column():
82
  image_input = gr.Image(type="pil", label="Upload an Image")
83
  extract_button = gr.Button("Extract Text")
84
- text_output = gr.Textbox(label="Extracted Text", interactive=False)
85
-
 
 
86
  with gr.Column():
87
  keyword_input = gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword")
88
  search_button = gr.Button("Search Keyword")
89
- search_output = gr.HTML(label="Search Results")
90
 
91
- # Link the buttons to their respective functions
92
- extract_button.click(fn=extract_text_app, inputs=image_input, outputs=text_output, _js=None)
93
- extract_button.click(fn=lambda txt: txt, inputs=text_output, outputs=extracted_text)
94
- search_button.click(fn=search_text_app, inputs=[extracted_text, keyword_input], outputs=search_output)
95
 
96
  # Launch Gradio App
97
  iface.launch()
 
16
 
17
  RAG, model, processor = load_models()
18
 
19
+ # Function for OCR
20
+ def extract_text_from_image(image):
21
  text_query = "Extract all the text in Sanskrit and English from the image."
22
+
23
  # Prepare message for Qwen model
24
+ messages = [
25
+ {
26
+ "role": "user",
27
  "content": [
28
+ {"type": "image", "image": image},
29
+ {"type": "text", "text": text_query}
30
+ ]
31
+ }
32
  ]
33
+
34
  # Process the image
35
  text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
36
  image_inputs, video_inputs = process_vision_info(messages)
37
  inputs = processor(
38
  text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
39
  ).to("cpu") # Use CPU
40
+
41
  # Generate text
42
  with torch.no_grad():
43
  generated_ids = model.generate(**inputs, max_new_tokens=2000)
44
  generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
45
+ extracted_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
46
+
 
 
47
  return extracted_text
48
 
49
+ # Function for keyword search
50
+ def search_keyword_in_text(extracted_text, keyword):
51
  keyword_lower = keyword.lower()
52
  sentences = extracted_text.split('. ')
53
  matched_sentences = []
54
+
55
  for sentence in sentences:
56
  if keyword_lower in sentence.lower():
57
+ highlighted_sentence = re.sub(f'({re.escape(keyword)})', r'<mark>\1</mark>', sentence, flags=re.IGNORECASE)
 
 
58
  matched_sentences.append(highlighted_sentence)
59
+
60
+ return matched_sentences if matched_sentences else ["No matches found."]
61
 
62
  # Gradio App
63
+ def app_extract_text(image):
64
+ extracted_text = extract_text_from_image(image)
65
  return extracted_text
66
 
67
+ def app_search_keyword(extracted_text, keyword):
68
+ search_results = search_keyword_in_text(extracted_text, keyword)
69
+ search_results_str = "<br>".join(search_results)
70
  return search_results_str
71
 
72
  # Gradio Interface
73
  with gr.Blocks() as iface:
 
 
74
  with gr.Row():
75
  with gr.Column():
76
  image_input = gr.Image(type="pil", label="Upload an Image")
77
  extract_button = gr.Button("Extract Text")
78
+ extracted_text_output = gr.Textbox(label="Extracted Text")
79
+
80
+ extract_button.click(app_extract_text, inputs=image_input, outputs=extracted_text_output)
81
+
82
  with gr.Column():
83
  keyword_input = gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword")
84
  search_button = gr.Button("Search Keyword")
85
+ search_results_output = gr.HTML(label="Search Results")
86
 
87
+ search_button.click(app_search_keyword, inputs=[extracted_text_output, keyword_input], outputs=search_results_output)
 
 
 
88
 
89
  # Launch Gradio App
90
  iface.launch()