Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import json | |
from byaldi import RAGMultiModalModel | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import re | |
# Load models | |
def load_models(): | |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
return RAG, model, processor | |
RAG, model, processor = load_models() | |
# Function for OCR | |
def extract_text_from_image(image): | |
text_query = "Extract all the text in Sanskrit and English from the image." | |
# Prepare message for Qwen model | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text_query} | |
] | |
} | |
] | |
# Process the image | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" | |
).to("cpu") # Use CPU | |
# Generate text | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=2000) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
extracted_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return extracted_text | |
# Function for keyword search | |
def search_keyword_in_text(extracted_text, keyword): | |
keyword_lower = keyword.lower() | |
sentences = extracted_text.split('. ') | |
matched_sentences = [] | |
for sentence in sentences: | |
if keyword_lower in sentence.lower(): | |
highlighted_sentence = re.sub(f'({re.escape(keyword)})', r'<mark>\1</mark>', sentence, flags=re.IGNORECASE) | |
matched_sentences.append(highlighted_sentence) | |
return matched_sentences if matched_sentences else ["No matches found."] | |
# Gradio App | |
def app_extract_text(image): | |
extracted_text = extract_text_from_image(image) | |
return extracted_text | |
def app_search_keyword(extracted_text, keyword): | |
search_results = search_keyword_in_text(extracted_text, keyword) | |
search_results_str = "<br>".join(search_results) | |
return search_results_str | |
title_html = """ | |
<h1><span class="gradient-text" id="text">IIT Roorkee (GOT ASSIGNMENT)</span></h1> | |
""" | |
# Gradio Interface | |
with gr.Blocks() as iface: | |
gr.HTML(title_html) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil", label="Upload an Image") | |
extract_button = gr.Button("Extract Text") | |
extracted_text_output = gr.Textbox(label="Extracted Text") | |
extract_button.click(app_extract_text, inputs=image_input, outputs=extracted_text_output) | |
with gr.Column(): | |
keyword_input = gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") | |
search_button = gr.Button("Search Keyword") | |
search_results_output = gr.HTML(label="Search Results") | |
search_button.click(app_search_keyword, inputs=[extracted_text_output, keyword_input], outputs=search_results_output) | |
# Launch Gradio App | |
iface.launch() | |