Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import json | |
from byaldi import RAGMultiModalModel | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import re | |
# Load models | |
def load_models(): | |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
return RAG, model, processor | |
RAG, model, processor = load_models() | |
# Global variable to store extracted text | |
extracted_text_global = "" | |
# Function for OCR extraction | |
def extract_text(image): | |
global extracted_text_global | |
text_query = "Extract all the text in Sanskrit and English from the image." | |
# Prepare message for Qwen model | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text_query}, | |
], | |
} | |
] | |
# Process the image | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
).to("cpu") # Use CPU | |
# Generate text | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=2000) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
extracted_text = processor.batch_decode( | |
generated_ids_trimmed, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
)[0] | |
# Store extracted text in global variable | |
extracted_text_global = extracted_text | |
return extracted_text | |
# Function for keyword search within extracted text | |
def search_keyword(keyword): | |
global extracted_text_global | |
if not extracted_text_global: | |
return "No extracted text available. Please extract text first.", "No matches found." | |
keyword_lower = keyword.lower() | |
sentences = extracted_text_global.split('. ') | |
matched_sentences = [] | |
# Perform keyword search with highlighting | |
for sentence in sentences: | |
if keyword_lower in sentence.lower(): | |
highlighted_sentence = re.sub( | |
f'({re.escape(keyword)})', | |
r'<mark>\1</mark>', # Highlight the matched keyword | |
sentence, | |
flags=re.IGNORECASE | |
) | |
matched_sentences.append(highlighted_sentence) | |
search_results_str = "<br>".join(matched_sentences) if matched_sentences else "No matches found." | |
return extracted_text_global, search_results_str | |
# Gradio App | |
def app_extract(image): | |
extracted_text = extract_text(image) | |
return extracted_text | |
def app_search(keyword): | |
extracted_text, search_results = search_keyword(keyword) | |
return extracted_text, search_results | |
# Gradio Interface with two buttons | |
iface = gr.Interface( | |
fn=[app_extract, app_search], | |
inputs=[ | |
gr.Image(type="pil", label="Upload an Image"), | |
gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") | |
], | |
outputs=[ | |
gr.Textbox(label="Extracted Text"), | |
gr.HTML(label="Search Results"), | |
], | |
title="OCR and Keyword Search in Images", | |
live=False, | |
description="First, extract the text from an image, then search for a keyword in the extracted text.", | |
layout="vertical", | |
allow_flagging="never" | |
) | |
# Create separate buttons | |
extract_button = gr.Button("Extract Text") | |
search_button = gr.Button("Search Keyword") | |
# Link buttons to their respective functions | |
extract_button.click(fn=app_extract, inputs=[gr.Image(type="pil")], outputs=[gr.Textbox(label="Extracted Text")]) | |
search_button.click(fn=app_search, inputs=[gr.Textbox(label="Enter keyword")], outputs=[gr.Textbox(label="Extracted Text"), gr.HTML(label="Search Results")]) | |
# Launch Gradio App | |
iface.launch() | |