Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,10 +13,8 @@ import easyocr
|
|
13 |
|
14 |
# OCR Model
|
15 |
tokenizer = AutoTokenizer.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, device_map='cpu')
|
16 |
-
# model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
|
17 |
model = AutoModel.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True)
|
18 |
-
|
19 |
-
model = model.eval()
|
20 |
reader = easyocr.Reader(['hi'])
|
21 |
|
22 |
UPLOAD_FOLDER = "./uploads"
|
@@ -31,7 +29,7 @@ def image_to_base64(image):
|
|
31 |
image.save(buffered, format="PNG")
|
32 |
return base64.b64encode(buffered.getvalue()).decode()
|
33 |
|
34 |
-
|
35 |
# @spaces.GPU
|
36 |
def run_GOT(image,language):
|
37 |
unique_id = str(uuid.uuid4())
|
@@ -95,20 +93,7 @@ title_html = """
|
|
95 |
<p>Scan Master uses General OCR Theory (GOT), a 580M end-to-end OCR 2.0 model for English optical character recognition and EASYOCR for Hindi optical character recognition. It supports plain text ocr.</p>
|
96 |
"""
|
97 |
|
98 |
-
acknowledgement_html = """
|
99 |
-
<h3>Acknowledgement</h3>
|
100 |
-
<a href="https://huggingface.co/ucaslcl/GOT-OCR2_0">[π Hugging Face]</a>
|
101 |
-
<a href="https://arxiv.org/abs/2409.01704">[π Paper]</a>
|
102 |
-
<a href="https://github.com/Ucas-HaoranWei/GOT-OCR2.0/">[π GitHub]</a>
|
103 |
-
"""
|
104 |
-
|
105 |
-
aboutme_html = """
|
106 |
-
<h3>About Me</h3>
|
107 |
-
<p>Name : Satvik Chandrakar</p>
|
108 |
-
<a href="https://github.com/Satvik-ai">[π GitHub]</a> """
|
109 |
-
|
110 |
|
111 |
-
# Scan Master web application developed using Gradio
|
112 |
with gr.Blocks() as scan_master_web_app:
|
113 |
gr.HTML(title_html)
|
114 |
gr.Markdown("""
|
|
|
13 |
|
14 |
# OCR Model
|
15 |
tokenizer = AutoTokenizer.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, device_map='cpu')
|
|
|
16 |
model = AutoModel.from_pretrained('RufusRubin777/GOT-OCR2_0_CPU', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True)
|
17 |
+
model = model.eval().cpu()
|
|
|
18 |
reader = easyocr.Reader(['hi'])
|
19 |
|
20 |
UPLOAD_FOLDER = "./uploads"
|
|
|
29 |
image.save(buffered, format="PNG")
|
30 |
return base64.b64encode(buffered.getvalue()).decode()
|
31 |
|
32 |
+
|
33 |
# @spaces.GPU
|
34 |
def run_GOT(image,language):
|
35 |
unique_id = str(uuid.uuid4())
|
|
|
93 |
<p>Scan Master uses General OCR Theory (GOT), a 580M end-to-end OCR 2.0 model for English optical character recognition and EASYOCR for Hindi optical character recognition. It supports plain text ocr.</p>
|
94 |
"""
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
97 |
with gr.Blocks() as scan_master_web_app:
|
98 |
gr.HTML(title_html)
|
99 |
gr.Markdown("""
|