Spaces:
Sleeping
Sleeping
| from keras.api.models import Sequential | |
| from keras.api.layers import InputLayer, Dense | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| import numpy as np | |
| from typing import List | |
| class InputData(BaseModel): | |
| data: List[float] # Lista de caracter铆sticas num茅ricas (flotantes) | |
| app = FastAPI() | |
| # Funci贸n para construir el modelo manualmente | |
| def build_model(): | |
| model = Sequential( | |
| [ | |
| InputLayer( | |
| input_shape=(2,), name="dense_2_input" | |
| ), # Ajusta el tama帽o de entrada seg煤n tu modelo | |
| Dense(16, activation="relu", name="dense_2"), | |
| Dense(1, activation="sigmoid", name="dense_3"), | |
| ] | |
| ) | |
| model.load_weights( | |
| "model.h5" | |
| ) # Aseg煤rate de que los nombres de las capas coincidan para que los pesos se carguen correctamente | |
| model.compile( | |
| loss="mean_squared_error", optimizer="adam", metrics=["binary_accuracy"] | |
| ) | |
| return model | |
| model = build_model() # Construir el modelo al iniciar la aplicaci贸n | |
| # Ruta de predicci贸n | |
| async def predict(data: InputData): | |
| print(f"Data: {data}") | |
| global model | |
| try: | |
| # Convertir la lista de entrada a un array de NumPy para la predicci贸n | |
| input_data = np.array(data.data).reshape( | |
| 1, -1 | |
| ) # Asumiendo que la entrada debe ser de forma (1, num_features) | |
| prediction = model.predict(input_data).round() | |
| return {"prediction": prediction.tolist()} | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |