math_tutor1 / app.py
Rubaiya's picture
Update app.py
41e21b4 verified
import streamlit as st
import google.generativeai as genai
import pytesseract
import shutil
import cv2
import numpy as np
from PIL import Image
import re
import os
# Automatically find Tesseract in the Linux environment
tesseract_path = shutil.which("tesseract")
st.write("Tesseract path:", tesseract_path or "❌ Not found")
if tesseract_path:
pytesseract.pytesseract.tesseract_cmd = tesseract_path
else:
raise EnvironmentError("❌ Tesseract is not installed or not in PATH")
# ---------- Setup ----------
genai.configure(api_key="AIzaSyCeVJTQondc1QP1rOXCGXLeRQa5mlhLkRI") # Replace with your actual API key
model = genai.GenerativeModel("gemini-2.0-flash")
# ---------- Utility Functions ----------
def remove_duplicates(text: str) -> str:
sentences = re.split(r'[.?!]', text)
seen = set()
result = []
for s in sentences:
s_clean = s.strip()
if s_clean and s_clean not in seen:
result.append(s_clean)
seen.add(s_clean)
return ". ".join(result)
# ---------- OCR + AI Functions ----------
def preprocess_image(image: Image.Image) -> np.ndarray:
img = np.array(image.convert("RGB"))
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
denoised = cv2.bilateralFilter(enhanced, 11, 17, 17)
edges = cv2.Canny(denoised, 30, 200)
enhanced = cv2.addWeighted(denoised, 0.8, edges, 0.2, 0)
thresh = cv2.adaptiveThreshold(
enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 15, 4
)
kernel = np.ones((2, 2), np.uint8)
dilated = cv2.dilate(thresh, kernel, iterations=2)
scale_percent = 300
width = int(dilated.shape[1] * scale_percent / 100)
height = int(dilated.shape[0] * scale_percent / 100)
resized = cv2.resize(dilated, (width, height), interpolation=cv2.INTER_CUBIC)
processed = cv2.morphologyEx(resized, cv2.MORPH_CLOSE, kernel, iterations=2)
cv2.imwrite("processed.png", processed)
return processed
def clean_extracted_text(text: str) -> str:
text = re.sub(r'[@0©w]+ *\)', lambda m: f"{chr(97 + (len(m.group(0).replace(' ', '')) - 1) % 26)})", text)
text = re.sub(r'==|\+=', '=', text)
text = re.sub(r'[lL]\b|°\s*', '°', text)
text = re.sub(r'\bra\b|\|', '', text)
text = re.sub(r'\b(\d+)\s*degrees\b|\b(\d+)\s*deg\b', r'\1°', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[\n\r]+', ' ', text)
return text.strip()
def extract_text_from_image(image: Image.Image) -> str:
processed_img = preprocess_image(image)
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+-*/=°()^ '
text = pytesseract.image_to_string(processed_img, config=custom_config)
if not text.strip():
custom_config = r'--oem 3 --psm 3 -c tessedit_char_whitelist=abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+-*/=°()^ '
text = pytesseract.image_to_string(processed_img, config=custom_config)
text = clean_extracted_text(text)
text = remove_duplicates(text)
return text
def is_math_question(line: str) -> bool:
return bool(re.search(r'\d.*[+\-×x*/=^()°]|[xyz]', line))
def parse_questions(text: str) -> list:
questions = []
current_question = ""
label_index = 0
parts = re.split(r'(\w\))|\||\bQuestion\b|\.', text, flags=re.IGNORECASE)
angle_pattern = r'(\b[xyz]\b|\d{1,3}°)'
for part in parts:
if part and re.match(r'[a-z]\)', part):
if current_question:
angles = re.findall(angle_pattern, current_question)
angles = [a for a in angles if not a.startswith("180")]
if angles and "triangle" in current_question.lower():
current_question += f" Angles: {', '.join(angles)}."
if is_math_question(current_question):
questions.append(f"{chr(97 + label_index)}) {current_question.strip()}")
label_index += 1
current_question = ""
elif part:
current_question += part + " "
if current_question:
angles = re.findall(angle_pattern, current_question)
angles = [a for a in angles if not a.startswith("180")]
if angles and "triangle" in current_question.lower():
current_question += f" Angles: {', '.join(angles)}."
if is_math_question(current_question):
questions.append(f"{chr(97 + label_index)}) {current_question.strip()}")
return questions
def solve_question_with_gemini(question_text: str) -> str:
prompt = f"""
You are a helpful AI math tutor specialized in GCSE-level (AQA/Edexcel) exams, covering algebra and geometry.
Rules:
- Fix OCR errors like 'L' as '°', '=' as '2', or '@', '0)' as labels.
- Focus on solving for x if it's a triangle question (e.g., x + 2x + 63 = 180).
- Ignore invalid triangle angles like 180° inside the angle list.
- If angle expressions are unclear, assume a common GCSE pattern (x, 2x, 63°) and explain your assumption.
Solve the following question step by step:
Question: {question_text}
"""
try:
response = model.generate_content(prompt)
return response.text.strip()
except Exception as e:
return f"⚠️ Error from Gemini API: {str(e)}"
# ---------- Streamlit UI ----------
st.set_page_config(page_title="MathMind – AI GCSE Solver", page_icon="📘")
st.title("📘 MathMind (Edexcel & AQA)")
st.markdown("**📖 Instantly solve GCSE math questions (algebra & geometry) using AI. Enter text or upload a photo!**")
input_method = st.radio("Choose input type", ("Text Input", "Image Upload"))
# ---------- Text Input Mode ----------
if input_method == "Text Input":
question = st.text_area("✍️ Enter your math question below (e.g., 2x + 3 = 9 or triangle angles x, 2x, 63°):")
if st.button("💡 Solve"):
if question.strip():
with st.spinner("Solving your question using Gemini..."):
solution = solve_question_with_gemini(question)
st.success("✅ Solution:")
st.markdown(solution)
else:
st.warning("⚠️ Please enter a math question.")
# ---------- Image Upload Mode ----------
else:
uploaded_file = st.file_uploader("📷 Upload an image with math questions", type=["png", "jpg", "jpeg"])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image")
if st.button("🔍 Extract & Solve"):
with st.spinner("Extracting text using OCR..."):
extracted_text = extract_text_from_image(image)
if not extracted_text:
st.warning("⚠️ No text detected. Try a high-contrast image, avoid handwriting, or crop to the question area.")
else:
st.subheader("📝 Extracted Text")
st.code(extracted_text)
questions = parse_questions(extracted_text)
if questions:
st.success(f"✅ Found {len(questions)} question(s).")
st.subheader("📘 AI-Powered Solutions")
for q in questions:
label = q.split(')')[0] + ')'
content = q.split(')')[1].strip()
with st.expander(f"Question {label}: {content}"):
solution = solve_question_with_gemini(q)
st.markdown(solution)
else:
st.warning("⚠️ No math questions found. Try a clearer or more math-focused image.")