Rrrrrrrita commited on
Commit
0d24a94
·
verified ·
1 Parent(s): f07eaaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -6,20 +6,23 @@ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
6
 
7
  # Streamlit application title
8
  st.title("Sentiment Analysis with text summarization for Singapore Airline")
9
- st.write("Summarization first, then sentiment analysis")
10
 
11
  # Text input for user to enter the text to summarize
12
- text = st.text_area("Enter the text to analyze", "")
13
 
14
  # Perform text summarization when the user clicks the "Go!" button
15
  if st.button("Go!"):
16
  # Perform text summarization on the input text
17
  results = summarizer(text)[0]['summary_text']
18
- st.write("Step 1: Text after summarization:", results)
 
19
 
20
  # Sentiment analysis as the second step
21
  classifier = pipeline("text-classification", model="Rrrrrrrita/Custom_Sentiment", return_all_scores=True)
22
- st.write("Classification for 3 emotions: positve, neutral, and negative")
 
 
23
 
24
  labels = classifier(text)[0]
25
  max_score = float('-inf')
@@ -30,6 +33,6 @@ if st.button("Go!"):
30
  max_score = label['score']
31
  max_label = label['label']
32
 
33
- st.write('Step 2: Sentiment Analysis:')
34
- st.write("Label:", max_label)
35
- st.write("Score:", max_score)
 
6
 
7
  # Streamlit application title
8
  st.title("Sentiment Analysis with text summarization for Singapore Airline")
9
+ st.write("Summarization first, then sentiment analysis.")
10
 
11
  # Text input for user to enter the text to summarize
12
+ text = st.text_area("Enter the text to analyze:", "")
13
 
14
  # Perform text summarization when the user clicks the "Go!" button
15
  if st.button("Go!"):
16
  # Perform text summarization on the input text
17
  results = summarizer(text)[0]['summary_text']
18
+ st.write("Step 1: Text after summarization:")
19
+ st.write(results)
20
 
21
  # Sentiment analysis as the second step
22
  classifier = pipeline("text-classification", model="Rrrrrrrita/Custom_Sentiment", return_all_scores=True)
23
+
24
+ st.write('Step 2: Sentiment Analysis:')
25
+ st.write("\t\t Classification for 3 emotions: positve, neutral, and negative")
26
 
27
  labels = classifier(text)[0]
28
  max_score = float('-inf')
 
33
  max_score = label['score']
34
  max_label = label['label']
35
 
36
+
37
+ st.write("\tLabel:", max_label)
38
+ st.write("\tScore:", max_score)