Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,20 +6,23 @@ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
6 |
|
7 |
# Streamlit application title
|
8 |
st.title("Sentiment Analysis with text summarization for Singapore Airline")
|
9 |
-
st.write("Summarization first, then sentiment analysis")
|
10 |
|
11 |
# Text input for user to enter the text to summarize
|
12 |
-
text = st.text_area("Enter the text to analyze", "")
|
13 |
|
14 |
# Perform text summarization when the user clicks the "Go!" button
|
15 |
if st.button("Go!"):
|
16 |
# Perform text summarization on the input text
|
17 |
results = summarizer(text)[0]['summary_text']
|
18 |
-
st.write("Step 1: Text after summarization:"
|
|
|
19 |
|
20 |
# Sentiment analysis as the second step
|
21 |
classifier = pipeline("text-classification", model="Rrrrrrrita/Custom_Sentiment", return_all_scores=True)
|
22 |
-
|
|
|
|
|
23 |
|
24 |
labels = classifier(text)[0]
|
25 |
max_score = float('-inf')
|
@@ -30,6 +33,6 @@ if st.button("Go!"):
|
|
30 |
max_score = label['score']
|
31 |
max_label = label['label']
|
32 |
|
33 |
-
|
34 |
-
st.write("
|
35 |
-
st.write("
|
|
|
6 |
|
7 |
# Streamlit application title
|
8 |
st.title("Sentiment Analysis with text summarization for Singapore Airline")
|
9 |
+
st.write("Summarization first, then sentiment analysis.")
|
10 |
|
11 |
# Text input for user to enter the text to summarize
|
12 |
+
text = st.text_area("Enter the text to analyze:", "")
|
13 |
|
14 |
# Perform text summarization when the user clicks the "Go!" button
|
15 |
if st.button("Go!"):
|
16 |
# Perform text summarization on the input text
|
17 |
results = summarizer(text)[0]['summary_text']
|
18 |
+
st.write("Step 1: Text after summarization:")
|
19 |
+
st.write(results)
|
20 |
|
21 |
# Sentiment analysis as the second step
|
22 |
classifier = pipeline("text-classification", model="Rrrrrrrita/Custom_Sentiment", return_all_scores=True)
|
23 |
+
|
24 |
+
st.write('Step 2: Sentiment Analysis:')
|
25 |
+
st.write("\t\t Classification for 3 emotions: positve, neutral, and negative")
|
26 |
|
27 |
labels = classifier(text)[0]
|
28 |
max_score = float('-inf')
|
|
|
33 |
max_score = label['score']
|
34 |
max_label = label['label']
|
35 |
|
36 |
+
|
37 |
+
st.write("\tLabel:", max_label)
|
38 |
+
st.write("\tScore:", max_score)
|