Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| # Load the text summarization model pipeline | |
| summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
| # Streamlit application title | |
| st.title("Sentiment Analysis with text summarization for Singapore Airline") | |
| # Text input for user to enter the text to summarize | |
| text = st.text_area("Enter the text to analyze:", "") | |
| # Perform text summarization when the user clicks the "Go!" button | |
| if st.button("Go!"): | |
| # Perform text summarization on the input text | |
| results = summarizer(text)[0]['summary_text'] | |
| st.write("Step 1: Text after summarization:") | |
| st.write(results) | |
| # Sentiment analysis as the second step | |
| classifier = pipeline("text-classification", model="Rrrrrrrita/Custom_Sentiment", return_all_scores=True) | |
| st.write('Step 2: Sentiment Analysis:') | |
| st.write("\t\t Classification for 3 emotions: positve, neutral, and negative") | |
| labels = classifier(text)[0] | |
| max_score = float('-inf') | |
| max_label = '' | |
| for label in labels: | |
| if label['score'] > max_score: | |
| max_score = label['score'] | |
| max_label = label['label'] | |
| st.write("\tLabel:", max_label) | |
| st.write("\tScore:", max_score) |