Spaces:
Sleeping
Sleeping
from typing import Iterator | |
from io import StringIO | |
import os | |
import pathlib | |
import tempfile | |
# External programs | |
import whisper | |
import ffmpeg | |
# UI | |
import gradio as gr | |
from download import downloadUrl | |
from utils import slugify, write_srt, write_vtt | |
#import os | |
#os.system("pip install git+https://github.com/openai/whisper.git") | |
# Limitations (set to -1 to disable) | |
DEFAULT_INPUT_AUDIO_MAX_DURATION = 600 # seconds | |
# Whether or not to automatically delete all uploaded files, to save disk space | |
DELETE_UPLOADED_FILES = True | |
LANGUAGES = [ | |
"English", "Chinese", "German", "Spanish", "Russian", "Korean", | |
"French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan", | |
"Dutch", "Arabic", "Swedish", "Italian", "Indonesian", "Hindi", | |
"Finnish", "Vietnamese", "Hebrew", "Ukrainian", "Greek", "Malay", | |
"Czech", "Romanian", "Danish", "Hungarian", "Tamil", "Norwegian", | |
"Thai", "Urdu", "Croatian", "Bulgarian", "Lithuanian", "Latin", | |
"Maori", "Malayalam", "Welsh", "Slovak", "Telugu", "Persian", | |
"Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian", | |
"Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic", | |
"Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian", | |
"Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer", | |
"Shona", "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian", | |
"Belarusian", "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish", | |
"Lao", "Uzbek", "Faroese", "Haitian Creole", "Pashto", "Turkmen", | |
"Nynorsk", "Maltese", "Sanskrit", "Luxembourgish", "Myanmar", "Tibetan", | |
"Tagalog", "Malagasy", "Assamese", "Tatar", "Hawaiian", "Lingala", | |
"Hausa", "Bashkir", "Javanese", "Sundanese" | |
] | |
model_cache = dict() | |
class UI: | |
def __init__(self, inputAudioMaxDuration): | |
self.inputAudioMaxDuration = inputAudioMaxDuration | |
def transcribeFile(self, modelName, languageName, urlData, uploadFile, microphoneData, task): | |
source, sourceName = getSource(urlData, uploadFile, microphoneData) | |
try: | |
selectedLanguage = languageName.lower() if len(languageName) > 0 else None | |
selectedModel = modelName if modelName is not None else "base" | |
if self.inputAudioMaxDuration > 0: | |
# Calculate audio length | |
audioDuration = ffmpeg.probe(source)["format"]["duration"] | |
if float(audioDuration) > self.inputAudioMaxDuration: | |
return ("[ERROR]: Maximum audio file length is " + str(self.inputAudioMaxDuration) + "s, file was " + str(audioDuration) + "s"), "[ERROR]" | |
model = model_cache.get(selectedModel, None) | |
if not model: | |
model = whisper.load_model(selectedModel) | |
model_cache[selectedModel] = model | |
# The results | |
result = model.transcribe(source, language=selectedLanguage, task=task) | |
text = result["text"] | |
vtt = getSubs(result["segments"], "vtt") | |
srt = getSubs(result["segments"], "srt") | |
# Files that can be downloaded | |
downloadDirectory = tempfile.mkdtemp() | |
filePrefix = slugify(sourceName, allow_unicode=True) | |
download = [] | |
download.append(createFile(srt, downloadDirectory, filePrefix + "-subs.srt")); | |
download.append(createFile(vtt, downloadDirectory, filePrefix + "-subs.vtt")); | |
download.append(createFile(text, downloadDirectory, filePrefix + "-transcript.txt")); | |
return download, text, vtt | |
finally: | |
# Cleanup source | |
if DELETE_UPLOADED_FILES: | |
print("Deleting source file " + source) | |
os.remove(source) | |
def getSource(urlData, uploadFile, microphoneData): | |
if urlData: | |
# Download from YouTube | |
source = downloadUrl(urlData) | |
else: | |
# File input | |
source = uploadFile if uploadFile is not None else microphoneData | |
file_path = pathlib.Path(source) | |
sourceName = file_path.stem[:18] + file_path.suffix | |
return source, sourceName | |
def createFile(text: str, directory: str, fileName: str) -> str: | |
# Write the text to a file | |
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file: | |
file.write(text) | |
return file.name | |
def getSubs(segments: Iterator[dict], format: str) -> str: | |
segmentStream = StringIO() | |
if format == 'vtt': | |
write_vtt(segments, file=segmentStream) | |
elif format == 'srt': | |
write_srt(segments, file=segmentStream) | |
else: | |
raise Exception("Unknown format " + format) | |
segmentStream.seek(0) | |
return segmentStream.read() | |
def createUi(inputAudioMaxDuration, share=False): | |
ui = UI(inputAudioMaxDuration) | |
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse " | |
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition " | |
ui_description += " as well as speech translation and language identification. " | |
if inputAudioMaxDuration > 0: | |
ui_description += "\n\n" + "Max audio file length: " + str(inputAudioMaxDuration) + " s" | |
demo = gr.Interface(fn=ui.transcribeFile, description=ui_description, inputs=[ | |
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"), | |
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"), | |
gr.Text(label="URL (YouTube, etc.)"), | |
gr.Audio(source="upload", type="filepath", label="Upload Audio"), | |
gr.Audio(source="microphone", type="filepath", label="Microphone Input"), | |
gr.Dropdown(choices=["transcribe", "translate"], label="Task"), | |
], outputs=[ | |
gr.File(label="Download"), | |
gr.Text(label="Transcription"), | |
gr.Text(label="Segments") | |
]) | |
demo.launch(share=share) | |
if __name__ == '__main__': | |
createUi(DEFAULT_INPUT_AUDIO_MAX_DURATION) |