Spaces:
Sleeping
Sleeping
import subprocess | |
def install_spacy_model(model_name): | |
try: | |
subprocess.check_call(["python", "-m", "spacy", "download", model_name]) | |
except subprocess.CalledProcessError as e: | |
print(f"Error occurred while installing the model: {model_name}") | |
print(f"Error details: {str(e)}") | |
install_spacy_model("en_core_web_trf") | |
import gradio as gr | |
import torch | |
from syngen_diffusion_pipeline import SynGenDiffusionPipeline | |
model_path = 'CompVis/stable-diffusion-v1-4' | |
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
pipe = SynGenDiffusionPipeline.from_pretrained(model_path).to(device) | |
def generate_fn(prompt, seed): | |
generator = torch.Generator(device.type).manual_seed(int(seed)) | |
result = pipe(prompt=prompt, generator=generator, num_inference_steps=50) | |
return result['images'][0] | |
title = "SynGen" | |
description = """ | |
This is the demo for [SynGen](https://github.com/RoyiRa/Syntax-Guided-Generation), an image synthesis approach which first syntactically analyses the prompt to identify entities and their modifiers, and then uses a novel loss function that encourages the cross-attention maps to agree with the linguistic binding reflected by the syntax. Preprint: \"Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment\" (arxiv link coming soon). | |
""" | |
examples = [ | |
["a pink sunflower and a yellow flamingo", "16"], | |
["a pink sunflower and a yellow flamingo", "60"], | |
["a checkered bowl in a cluttered room", "69"], | |
["a checkered bowl in a cluttered room", "77"], | |
["a horned lion and a spotted monkey", "1269"], | |
["a horned lion and a spotted monkey", "9146"] | |
] | |
prompt_textbox = gr.Textbox(label="Prompt", placeholder="a pink sunflower and a yellow flamingo", lines=1) | |
seed_textbox = gr.Textbox(label="Seed", placeholder="42", lines=1) | |
output = gr.Image(label="generation") | |
demo = gr.Interface(fn=generate_fn, inputs=[prompt_textbox, seed_textbox], outputs=output, examples=examples, | |
title=title, description=description, allow_flagging=False) | |
demo.launch() | |