Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
df=pd.read_csv('healifyLLM_answer_dataset.csv')
|
6 |
+
|
7 |
+
with open('question_labels.json', 'r') as f:
|
8 |
+
questions_label = json.load(f)
|
9 |
+
que_classes = list(questions_label.keys())
|
10 |
+
|
11 |
+
def answering(text):
|
12 |
+
percentage = learner_inf.blurr_predict(text)[0]['score']* 100
|
13 |
+
index = learner_inf.blurr_predict(text)[0]['class_index']
|
14 |
+
label = learner_inf.blurr_predict(text)[0]['class_labels'][index]
|
15 |
+
result = df_answer[df_answer['label'] == label]['answer']
|
16 |
+
if percentage >= 35:
|
17 |
+
return result.iloc[0]
|
18 |
+
else:
|
19 |
+
return "My knowledge is limited. Ask some other medical question."
|
20 |
+
|
21 |
+
label = gr.components.Label(label="Answer")
|
22 |
+
iface = gr.Interface(fn=answering,inputs="text", outputs=label2, title="Disease QnA")
|
23 |
+
iface.launch(inline=False)
|
24 |
+
|
25 |
+
|