max
commited on
Commit
•
4c3ee55
1
Parent(s):
24a3787
initial commit
Browse files- app.py +115 -0
- clip_texts_1_fp16.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import gradio.components as gc
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from transformers import CLIPModel, CLIPProcessor
|
10 |
+
device = 'cpu'
|
11 |
+
torch.no_grad().__enter__()
|
12 |
+
torch.autocast('cuda').__enter__()
|
13 |
+
|
14 |
+
# %%
|
15 |
+
|
16 |
+
t = pd.read_pickle("clip_texts_1_fp16.pkl")
|
17 |
+
words = t.reset_index().word
|
18 |
+
wordsv = torch.tensor(t.values).to(device)
|
19 |
+
|
20 |
+
# %%
|
21 |
+
|
22 |
+
# %%
|
23 |
+
model_name = "openai/clip-vit-large-patch14"
|
24 |
+
mmm = CLIPModel.from_pretrained(model_name)
|
25 |
+
mmm.eval()
|
26 |
+
mmm.to(device)
|
27 |
+
|
28 |
+
processor = CLIPProcessor.from_pretrained(model_name)
|
29 |
+
|
30 |
+
# %%
|
31 |
+
|
32 |
+
|
33 |
+
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
34 |
+
""" helper function to spherically interpolate two arrays v1 v2 """
|
35 |
+
inputs_are_torch = False
|
36 |
+
if not isinstance(v0, np.ndarray):
|
37 |
+
inputs_are_torch = True
|
38 |
+
input_device = v0.device
|
39 |
+
v0 = v0.cpu().numpy()
|
40 |
+
v1 = v1.cpu().numpy()
|
41 |
+
|
42 |
+
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
43 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
44 |
+
v2 = (1 - t) * v0 + t * v1
|
45 |
+
else:
|
46 |
+
theta_0 = np.arccos(dot)
|
47 |
+
sin_theta_0 = np.sin(theta_0)
|
48 |
+
theta_t = theta_0 * t
|
49 |
+
sin_theta_t = np.sin(theta_t)
|
50 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
51 |
+
s1 = sin_theta_t / sin_theta_0
|
52 |
+
v2 = s0 * v0 + s1 * v1
|
53 |
+
|
54 |
+
if inputs_are_torch:
|
55 |
+
v2 = torch.from_numpy(v2).to(input_device)
|
56 |
+
|
57 |
+
return v2
|
58 |
+
|
59 |
+
|
60 |
+
def query(text: str, img: Image.Image, limit: int, score_threshold: float, slerp_degree: float):
|
61 |
+
if text != '':
|
62 |
+
inp = processor(text=text, return_tensors='pt').to(device)
|
63 |
+
rout = mmm.get_text_features(**inp)
|
64 |
+
tout = rout.detach().cpu().numpy()[0]
|
65 |
+
out = tout
|
66 |
+
|
67 |
+
if img is not None:
|
68 |
+
inp = processor(images=[img], return_tensors="pt",).to(device)
|
69 |
+
rout = mmm.get_image_features(**inp)
|
70 |
+
iout = rout.detach().cpu().numpy()[0]
|
71 |
+
out = iout
|
72 |
+
|
73 |
+
if text != '' and img is not None:
|
74 |
+
out = slerp(slerp_degree, tout, iout)
|
75 |
+
|
76 |
+
if out is not None:
|
77 |
+
# calculate cosine similarity
|
78 |
+
scores = np.dot(out, wordsv.T)
|
79 |
+
# sort by score
|
80 |
+
topk = (
|
81 |
+
pd.concat(
|
82 |
+
[words, pd.Series(scores, name='score')],
|
83 |
+
axis=1
|
84 |
+
)
|
85 |
+
.sort_values('score', ascending=False)
|
86 |
+
.query(f'score > {score_threshold}')
|
87 |
+
.head(limit)
|
88 |
+
)
|
89 |
+
|
90 |
+
topwords = "\n".join(
|
91 |
+
f'{word}: {score:.2f} '
|
92 |
+
for _, word, score in topk.itertuples()
|
93 |
+
)
|
94 |
+
|
95 |
+
return topwords
|
96 |
+
|
97 |
+
|
98 |
+
searchtext = gc.Textbox(lines=2, placeholder="Search text")
|
99 |
+
searchimage = gc.Image(shape=(224, 224), label="Search image", type='pil')
|
100 |
+
inp_limit = gc.Slider(1, 50, 10, step=1, label='Limit')
|
101 |
+
score_threshold = gc.Slider(0, 30, 0, step=.5, label='Score threshold')
|
102 |
+
slerp_degree = gc.Slider(
|
103 |
+
0, 1, 0.5, step=.01, label='Slerp degree (if both text and image are provided)\nFinds a midpoint between image and text embeddings')
|
104 |
+
|
105 |
+
|
106 |
+
dsurl = 'https://www.kaggle.com/datasets/yk1598/479k-english-words'
|
107 |
+
gr.Interface(
|
108 |
+
query,
|
109 |
+
[searchtext, searchimage, inp_limit, score_threshold, slerp_degree],
|
110 |
+
[gc.Textbox(label='Top words')],
|
111 |
+
title="Initial Token Finder for Textual Inversion",
|
112 |
+
description=f"find the closest single token word for a given text and/or image.\nbased on {model_name}.\n\nData: {dsurl}",
|
113 |
+
analytics_enabled=False,
|
114 |
+
allow_flagging='never',
|
115 |
+
).launch()
|
clip_texts_1_fp16.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbcc5d3d464979b764c0b8a69a58f28f5bf941bf10b3501b513d3b28fcb17876
|
3 |
+
size 39828901
|