max
reinit
b6dd358
import numpy as np
import math
import sys
sys.path.insert(0, '../')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from torch_utils import misc
from torch_utils import persistence
from networks.basic_module import FullyConnectedLayer, Conv2dLayer, MappingNet, MinibatchStdLayer, DisFromRGB, DisBlock, StyleConv, ToRGB, get_style_code
@misc.profiled_function
def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512):
NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512}
return NF[2 ** stage]
@persistence.persistent_class
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = FullyConnectedLayer(in_features=in_features, out_features=hidden_features, activation='lrelu')
self.fc2 = FullyConnectedLayer(in_features=hidden_features, out_features=out_features)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
@misc.profiled_function
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
@misc.profiled_function
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
@persistence.persistent_class
class Conv2dLayerPartial(nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output to +-X, None = disable clamping.
trainable = True, # Update the weights of this layer during training?
):
super().__init__()
self.conv = Conv2dLayer(in_channels, out_channels, kernel_size, bias, activation, up, down, resample_filter,
conv_clamp, trainable)
self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size)
self.slide_winsize = kernel_size ** 2
self.stride = down
self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0
def forward(self, x, mask=None):
if mask is not None:
with torch.no_grad():
if self.weight_maskUpdater.type() != x.type():
self.weight_maskUpdater = self.weight_maskUpdater.to(x)
update_mask = F.conv2d(mask, self.weight_maskUpdater, bias=None, stride=self.stride, padding=self.padding)
mask_ratio = self.slide_winsize / (update_mask + 1e-8)
update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1
mask_ratio = torch.mul(mask_ratio, update_mask)
x = self.conv(x)
x = torch.mul(x, mask_ratio)
return x, update_mask
else:
x = self.conv(x)
return x, None
@persistence.persistent_class
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, down_ratio=1, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = FullyConnectedLayer(in_features=dim, out_features=dim)
self.k = FullyConnectedLayer(in_features=dim, out_features=dim)
self.v = FullyConnectedLayer(in_features=dim, out_features=dim)
self.proj = FullyConnectedLayer(in_features=dim, out_features=dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask_windows=None, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
norm_x = F.normalize(x, p=2.0, dim=-1)
q = self.q(norm_x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
k = self.k(norm_x).view(B_, -1, self.num_heads, C // self.num_heads).permute(0, 2, 3, 1)
v = self.v(x).view(B_, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k) * self.scale
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
if mask_windows is not None:
attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1)
attn = attn + attn_mask_windows.masked_fill(attn_mask_windows == 0, float(-100.0)).masked_fill(
attn_mask_windows == 1, float(0.0))
with torch.no_grad():
mask_windows = torch.clamp(torch.sum(mask_windows, dim=1, keepdim=True), 0, 1).repeat(1, N, 1)
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
return x, mask_windows
@persistence.persistent_class
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, down_ratio=1, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
if self.shift_size > 0:
down_ratio = 1
self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
down_ratio=down_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
proj_drop=drop)
self.fuse = FullyConnectedLayer(in_features=dim * 2, out_features=dim, activation='lrelu')
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.shift_size > 0:
attn_mask = self.calculate_mask(self.input_resolution)
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def calculate_mask(self, x_size):
# calculate attention mask for SW-MSA
H, W = x_size
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
def forward(self, x, x_size, mask=None):
# H, W = self.input_resolution
H, W = x_size
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = x.view(B, H, W, C)
if mask is not None:
mask = mask.view(B, H, W, 1)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
if mask is not None:
shifted_mask = torch.roll(mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
if mask is not None:
shifted_mask = mask
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
if mask is not None:
mask_windows = window_partition(shifted_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1)
else:
mask_windows = None
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
if self.input_resolution == x_size:
attn_windows, mask_windows = self.attn(x_windows, mask_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
else:
attn_windows, mask_windows = self.attn(x_windows, mask_windows, mask=self.calculate_mask(x_size).to(x.device)) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
if mask is not None:
mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1)
shifted_mask = window_reverse(mask_windows, self.window_size, H, W)
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
if mask is not None:
mask = torch.roll(shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
if mask is not None:
mask = shifted_mask
x = x.view(B, H * W, C)
if mask is not None:
mask = mask.view(B, H * W, 1)
# FFN
x = self.fuse(torch.cat([shortcut, x], dim=-1))
x = self.mlp(x)
return x, mask
@persistence.persistent_class
class PatchMerging(nn.Module):
def __init__(self, in_channels, out_channels, down=2):
super().__init__()
self.conv = Conv2dLayerPartial(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
activation='lrelu',
down=down,
)
self.down = down
def forward(self, x, x_size, mask=None):
x = token2feature(x, x_size)
if mask is not None:
mask = token2feature(mask, x_size)
x, mask = self.conv(x, mask)
if self.down != 1:
ratio = 1 / self.down
x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio))
x = feature2token(x)
if mask is not None:
mask = feature2token(mask)
return x, x_size, mask
@persistence.persistent_class
class PatchUpsampling(nn.Module):
def __init__(self, in_channels, out_channels, up=2):
super().__init__()
self.conv = Conv2dLayerPartial(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
activation='lrelu',
up=up,
)
self.up = up
def forward(self, x, x_size, mask=None):
x = token2feature(x, x_size)
if mask is not None:
mask = token2feature(mask, x_size)
x, mask = self.conv(x, mask)
if self.up != 1:
x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up))
x = feature2token(x)
if mask is not None:
mask = feature2token(mask)
return x, x_size, mask
@persistence.persistent_class
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size, down_ratio=1,
mlp_ratio=2., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# patch merging layer
if downsample is not None:
# self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
self.downsample = downsample
else:
self.downsample = None
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, down_ratio=down_ratio, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
self.conv = Conv2dLayerPartial(in_channels=dim, out_channels=dim, kernel_size=3, activation='lrelu')
def forward(self, x, x_size, mask=None):
if self.downsample is not None:
x, x_size, mask = self.downsample(x, x_size, mask)
identity = x
for blk in self.blocks:
if self.use_checkpoint:
x, mask = checkpoint.checkpoint(blk, x, x_size, mask)
else:
x, mask = blk(x, x_size, mask)
if mask is not None:
mask = token2feature(mask, x_size)
x, mask = self.conv(token2feature(x, x_size), mask)
x = feature2token(x) + identity
if mask is not None:
mask = feature2token(mask)
return x, x_size, mask
@persistence.persistent_class
class ToToken(nn.Module):
def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1):
super().__init__()
self.proj = Conv2dLayerPartial(in_channels=in_channels, out_channels=dim, kernel_size=kernel_size, activation='lrelu')
def forward(self, x, mask):
x, mask = self.proj(x, mask)
return x, mask
#----------------------------------------------------------------------------
@persistence.persistent_class
class EncFromRGB(nn.Module):
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2
super().__init__()
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
activation=activation,
)
self.conv1 = Conv2dLayer(in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
activation=activation,
)
def forward(self, x):
x = self.conv0(x)
x = self.conv1(x)
return x
@persistence.persistent_class
class ConvBlockDown(nn.Module):
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log
super().__init__()
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
activation=activation,
down=2,
)
self.conv1 = Conv2dLayer(in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
activation=activation,
)
def forward(self, x):
x = self.conv0(x)
x = self.conv1(x)
return x
def token2feature(x, x_size):
B, N, C = x.shape
h, w = x_size
x = x.permute(0, 2, 1).reshape(B, C, h, w)
return x
def feature2token(x):
B, C, H, W = x.shape
x = x.view(B, C, -1).transpose(1, 2)
return x
@persistence.persistent_class
class Encoder(nn.Module):
def __init__(self, res_log2, img_channels, activation, patch_size=5, channels=16, drop_path_rate=0.1):
super().__init__()
self.resolution = []
for idx, i in enumerate(range(res_log2, 3, -1)): # from input size to 16x16
res = 2 ** i
self.resolution.append(res)
if i == res_log2:
block = EncFromRGB(img_channels * 2 + 1, nf(i), activation)
else:
block = ConvBlockDown(nf(i+1), nf(i), activation)
setattr(self, 'EncConv_Block_%dx%d' % (res, res), block)
def forward(self, x):
out = {}
for res in self.resolution:
res_log2 = int(np.log2(res))
x = getattr(self, 'EncConv_Block_%dx%d' % (res, res))(x)
out[res_log2] = x
return out
@persistence.persistent_class
class ToStyle(nn.Module):
def __init__(self, in_channels, out_channels, activation, drop_rate):
super().__init__()
self.conv = nn.Sequential(
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2),
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2),
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2),
)
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = FullyConnectedLayer(in_features=in_channels,
out_features=out_channels,
activation=activation)
# self.dropout = nn.Dropout(drop_rate)
def forward(self, x):
x = self.conv(x)
x = self.pool(x)
x = self.fc(x.flatten(start_dim=1))
# x = self.dropout(x)
return x
@persistence.persistent_class
class DecBlockFirstV2(nn.Module):
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.res = res
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
activation=activation,
)
self.conv1 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, ws, gs, E_features, noise_mode='random'):
# x = self.fc(x).view(x.shape[0], -1, 4, 4)
x = self.conv0(x)
x = x + E_features[self.res]
style = get_style_code(ws[:, 0], gs)
x = self.conv1(x, style, noise_mode=noise_mode)
style = get_style_code(ws[:, 1], gs)
img = self.toRGB(x, style, skip=None)
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class DecBlock(nn.Module):
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): # res = 4, ..., resolution_log2
super().__init__()
self.res = res
self.conv0 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
up=2,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.conv1 = StyleConv(in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, img, ws, gs, E_features, noise_mode='random'):
style = get_style_code(ws[:, self.res * 2 - 9], gs)
x = self.conv0(x, style, noise_mode=noise_mode)
x = x + E_features[self.res]
style = get_style_code(ws[:, self.res * 2 - 8], gs)
x = self.conv1(x, style, noise_mode=noise_mode)
style = get_style_code(ws[:, self.res * 2 - 7], gs)
img = self.toRGB(x, style, skip=img)
return x, img
@persistence.persistent_class
class Decoder(nn.Module):
def __init__(self, res_log2, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.Dec_16x16 = DecBlockFirstV2(4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels)
for res in range(5, res_log2 + 1):
setattr(self, 'Dec_%dx%d' % (2 ** res, 2 ** res),
DecBlock(res, nf(res - 1), nf(res), activation, style_dim, use_noise, demodulate, img_channels))
self.res_log2 = res_log2
def forward(self, x, ws, gs, E_features, noise_mode='random'):
x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode)
for res in range(5, self.res_log2 + 1):
block = getattr(self, 'Dec_%dx%d' % (2 ** res, 2 ** res))
x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode)
return img
@persistence.persistent_class
class DecStyleBlock(nn.Module):
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.res = res
self.conv0 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
up=2,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.conv1 = StyleConv(in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, img, style, skip, noise_mode='random'):
x = self.conv0(x, style, noise_mode=noise_mode)
x = x + skip
x = self.conv1(x, style, noise_mode=noise_mode)
img = self.toRGB(x, style, skip=img)
return x, img
@persistence.persistent_class
class FirstStage(nn.Module):
def __init__(self, img_channels, img_resolution=256, dim=180, w_dim=512, use_noise=False, demodulate=True, activation='lrelu'):
super().__init__()
res = 64
self.conv_first = Conv2dLayerPartial(in_channels=img_channels+1, out_channels=dim, kernel_size=3, activation=activation)
self.enc_conv = nn.ModuleList()
down_time = int(np.log2(img_resolution // res))
for i in range(down_time): # from input size to 64
self.enc_conv.append(
Conv2dLayerPartial(in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation)
)
# from 64 -> 16 -> 64
depths = [2, 3, 4, 3, 2]
ratios = [1, 1/2, 1/2, 2, 2]
num_heads = 6
window_sizes = [8, 16, 16, 16, 8]
drop_path_rate = 0.1
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
self.tran = nn.ModuleList()
for i, depth in enumerate(depths):
res = int(res * ratios[i])
if ratios[i] < 1:
merge = PatchMerging(dim, dim, down=int(1/ratios[i]))
elif ratios[i] > 1:
merge = PatchUpsampling(dim, dim, up=ratios[i])
else:
merge = None
self.tran.append(
BasicLayer(dim=dim, input_resolution=[res, res], depth=depth, num_heads=num_heads,
window_size=window_sizes[i], drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
downsample=merge)
)
# global style
down_conv = []
for i in range(int(np.log2(16))):
down_conv.append(Conv2dLayer(in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation))
down_conv.append(nn.AdaptiveAvgPool2d((1, 1)))
self.down_conv = nn.Sequential(*down_conv)
self.to_style = FullyConnectedLayer(in_features=dim, out_features=dim*2, activation=activation)
self.ws_style = FullyConnectedLayer(in_features=w_dim, out_features=dim, activation=activation)
self.to_square = FullyConnectedLayer(in_features=dim, out_features=16*16, activation=activation)
style_dim = dim * 3
self.dec_conv = nn.ModuleList()
for i in range(down_time): # from 64 to input size
res = res * 2
self.dec_conv.append(DecStyleBlock(res, dim, dim, activation, style_dim, use_noise, demodulate, img_channels))
def forward(self, images_in, masks_in, ws, noise_mode='random'):
x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1)
skips = []
x, mask = self.conv_first(x, masks_in) # input size
skips.append(x)
for i, block in enumerate(self.enc_conv): # input size to 64
x, mask = block(x, mask)
if i != len(self.enc_conv) - 1:
skips.append(x)
x_size = x.size()[-2:]
x = feature2token(x)
mask = feature2token(mask)
mid = len(self.tran) // 2
for i, block in enumerate(self.tran): # 64 to 16
if i < mid:
x, x_size, mask = block(x, x_size, mask)
skips.append(x)
elif i > mid:
x, x_size, mask = block(x, x_size, None)
x = x + skips[mid - i]
else:
x, x_size, mask = block(x, x_size, None)
mul_map = torch.ones_like(x) * 0.5
mul_map = F.dropout(mul_map, training=True)
ws = self.ws_style(ws[:, -1])
add_n = self.to_square(ws).unsqueeze(1)
add_n = F.interpolate(add_n, size=x.size(1), mode='linear', align_corners=False).squeeze(1).unsqueeze(-1)
x = x * mul_map + add_n * (1 - mul_map)
gs = self.to_style(self.down_conv(token2feature(x, x_size)).flatten(start_dim=1))
style = torch.cat([gs, ws], dim=1)
x = token2feature(x, x_size).contiguous()
img = None
for i, block in enumerate(self.dec_conv):
x, img = block(x, img, style, skips[len(self.dec_conv)-i-1], noise_mode=noise_mode)
# ensemble
img = img * (1 - masks_in) + images_in * masks_in
return img
@persistence.persistent_class
class SynthesisNet(nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels = 3, # Number of color channels.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_decay = 1.0,
channel_max = 512, # Maximum number of channels in any layer.
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
drop_rate = 0.5,
use_noise = True,
demodulate = True,
):
super().__init__()
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.num_layers = resolution_log2 * 2 - 3 * 2
self.img_resolution = img_resolution
self.resolution_log2 = resolution_log2
# first stage
self.first_stage = FirstStage(img_channels, img_resolution=img_resolution, w_dim=w_dim, use_noise=False, demodulate=demodulate)
# second stage
self.enc = Encoder(resolution_log2, img_channels, activation, patch_size=5, channels=16)
self.to_square = FullyConnectedLayer(in_features=w_dim, out_features=16*16, activation=activation)
self.to_style = ToStyle(in_channels=nf(4), out_channels=nf(2) * 2, activation=activation, drop_rate=drop_rate)
style_dim = w_dim + nf(2) * 2
self.dec = Decoder(resolution_log2, activation, style_dim, use_noise, demodulate, img_channels)
def forward(self, images_in, masks_in, ws, noise_mode='random', return_stg1=False):
out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode)
# encoder
x = images_in * masks_in + out_stg1 * (1 - masks_in)
x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1)
E_features = self.enc(x)
fea_16 = E_features[4]
mul_map = torch.ones_like(fea_16) * 0.5
mul_map = F.dropout(mul_map, training=True)
add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1)
add_n = F.interpolate(add_n, size=fea_16.size()[-2:], mode='bilinear', align_corners=False)
fea_16 = fea_16 * mul_map + add_n * (1 - mul_map)
E_features[4] = fea_16
# style
gs = self.to_style(fea_16)
# decoder
img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode)
# ensemble
img = img * (1 - masks_in) + images_in * masks_in
if not return_stg1:
return img
else:
return img, out_stg1
@persistence.persistent_class
class Generator(nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # resolution of generated image
img_channels, # Number of input color channels.
synthesis_kwargs = {}, # Arguments for SynthesisNetwork.
mapping_kwargs = {}, # Arguments for MappingNetwork.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
self.synthesis = SynthesisNet(w_dim=w_dim,
img_resolution=img_resolution,
img_channels=img_channels,
**synthesis_kwargs)
self.mapping = MappingNet(z_dim=z_dim,
c_dim=c_dim,
w_dim=w_dim,
num_ws=self.synthesis.num_layers,
**mapping_kwargs)
def forward(self, images_in, masks_in, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False,
noise_mode='random', return_stg1=False):
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff,
skip_w_avg_update=skip_w_avg_update)
if not return_stg1:
img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode)
return img
else:
img, out_stg1 = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode, return_stg1=True)
return img, out_stg1
@persistence.persistent_class
class Discriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
channel_decay = 1,
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
activation = 'lrelu',
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable.
):
super().__init__()
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.resolution_log2 = resolution_log2
if cmap_dim == None:
cmap_dim = nf(2)
if c_dim == 0:
cmap_dim = 0
self.cmap_dim = cmap_dim
if c_dim > 0:
self.mapping = MappingNet(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None)
Dis = [DisFromRGB(img_channels+1, nf(resolution_log2), activation)]
for res in range(resolution_log2, 2, -1):
Dis.append(DisBlock(nf(res), nf(res-1), activation))
if mbstd_num_channels > 0:
Dis.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels))
Dis.append(Conv2dLayer(nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation))
self.Dis = nn.Sequential(*Dis)
self.fc0 = FullyConnectedLayer(nf(2)*4**2, nf(2), activation=activation)
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
# for 64x64
Dis_stg1 = [DisFromRGB(img_channels+1, nf(resolution_log2) // 2, activation)]
for res in range(resolution_log2, 2, -1):
Dis_stg1.append(DisBlock(nf(res) // 2, nf(res - 1) // 2, activation))
if mbstd_num_channels > 0:
Dis_stg1.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels))
Dis_stg1.append(Conv2dLayer(nf(2) // 2 + mbstd_num_channels, nf(2) // 2, kernel_size=3, activation=activation))
self.Dis_stg1 = nn.Sequential(*Dis_stg1)
self.fc0_stg1 = FullyConnectedLayer(nf(2) // 2 * 4 ** 2, nf(2) // 2, activation=activation)
self.fc1_stg1 = FullyConnectedLayer(nf(2) // 2, 1 if cmap_dim == 0 else cmap_dim)
def forward(self, images_in, masks_in, images_stg1, c):
x = self.Dis(torch.cat([masks_in - 0.5, images_in], dim=1))
x = self.fc1(self.fc0(x.flatten(start_dim=1)))
x_stg1 = self.Dis_stg1(torch.cat([masks_in - 0.5, images_stg1], dim=1))
x_stg1 = self.fc1_stg1(self.fc0_stg1(x_stg1.flatten(start_dim=1)))
if self.c_dim > 0:
cmap = self.mapping(None, c)
if self.cmap_dim > 0:
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
x_stg1 = (x_stg1 * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
return x, x_stg1
if __name__ == '__main__':
device = torch.device('cuda:0')
batch = 1
res = 512
G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3).to(device)
D = Discriminator(c_dim=0, img_resolution=res, img_channels=3).to(device)
img = torch.randn(batch, 3, res, res).to(device)
mask = torch.randn(batch, 1, res, res).to(device)
z = torch.randn(batch, 512).to(device)
G.eval()
# def count(block):
# return sum(p.numel() for p in block.parameters()) / 10 ** 6
# print('Generator', count(G))
# print('discriminator', count(D))
with torch.no_grad():
img, img_stg1 = G(img, mask, z, None, return_stg1=True)
print('output of G:', img.shape, img_stg1.shape)
score, score_stg1 = D(img, mask, img_stg1, None)
print('output of D:', score.shape, score_stg1.shape)