Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
import os | |
import time | |
import hashlib | |
import pickle | |
import copy | |
import uuid | |
import numpy as np | |
import torch | |
import dnnlib | |
import math | |
import cv2 | |
#---------------------------------------------------------------------------- | |
class MetricOptions: | |
def __init__(self, G=None, G_kwargs={}, dataset_kwargs={}, num_gpus=1, rank=0, device=None, progress=None, cache=True): | |
assert 0 <= rank < num_gpus | |
self.G = G | |
self.G_kwargs = dnnlib.EasyDict(G_kwargs) | |
self.dataset_kwargs = dnnlib.EasyDict(dataset_kwargs) | |
self.num_gpus = num_gpus | |
self.rank = rank | |
self.device = device if device is not None else torch.device('cuda', rank) | |
self.progress = progress.sub() if progress is not None and rank == 0 else ProgressMonitor() | |
self.cache = cache | |
#---------------------------------------------------------------------------- | |
_feature_detector_cache = dict() | |
def get_feature_detector_name(url): | |
return os.path.splitext(url.split('/')[-1])[0] | |
def get_feature_detector(url, device=torch.device('cpu'), num_gpus=1, rank=0, verbose=False): | |
assert 0 <= rank < num_gpus | |
key = (url, device) | |
if key not in _feature_detector_cache: | |
is_leader = (rank == 0) | |
if not is_leader and num_gpus > 1: | |
torch.distributed.barrier() # leader goes first | |
with dnnlib.util.open_url(url, verbose=(verbose and is_leader)) as f: | |
_feature_detector_cache[key] = torch.jit.load(f).eval().to(device) | |
if is_leader and num_gpus > 1: | |
torch.distributed.barrier() # others follow | |
return _feature_detector_cache[key] | |
#---------------------------------------------------------------------------- | |
class FeatureStats: | |
def __init__(self, capture_all=False, capture_mean_cov=False, max_items=None): | |
self.capture_all = capture_all | |
self.capture_mean_cov = capture_mean_cov | |
self.max_items = max_items | |
self.num_items = 0 | |
self.num_features = None | |
self.all_features = None | |
self.raw_mean = None | |
self.raw_cov = None | |
def set_num_features(self, num_features): | |
if self.num_features is not None: | |
assert num_features == self.num_features | |
else: | |
self.num_features = num_features | |
self.all_features = [] | |
self.raw_mean = np.zeros([num_features], dtype=np.float64) | |
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64) | |
def is_full(self): | |
return (self.max_items is not None) and (self.num_items >= self.max_items) | |
def append(self, x): | |
x = np.asarray(x, dtype=np.float32) | |
assert x.ndim == 2 | |
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items): | |
if self.num_items >= self.max_items: | |
return | |
x = x[:self.max_items - self.num_items] | |
self.set_num_features(x.shape[1]) | |
self.num_items += x.shape[0] | |
if self.capture_all: | |
self.all_features.append(x) | |
if self.capture_mean_cov: | |
x64 = x.astype(np.float64) | |
self.raw_mean += x64.sum(axis=0) | |
self.raw_cov += x64.T @ x64 | |
def append_torch(self, x, num_gpus=1, rank=0): | |
assert isinstance(x, torch.Tensor) and x.ndim == 2 | |
assert 0 <= rank < num_gpus | |
if num_gpus > 1: | |
ys = [] | |
for src in range(num_gpus): | |
y = x.clone() | |
torch.distributed.broadcast(y, src=src) | |
ys.append(y) | |
x = torch.stack(ys, dim=1).flatten(0, 1) # interleave samples | |
self.append(x.cpu().numpy()) | |
def get_all(self): | |
assert self.capture_all | |
return np.concatenate(self.all_features, axis=0) | |
def get_all_torch(self): | |
return torch.from_numpy(self.get_all()) | |
def get_mean_cov(self): | |
assert self.capture_mean_cov | |
mean = self.raw_mean / self.num_items | |
cov = self.raw_cov / self.num_items | |
cov = cov - np.outer(mean, mean) | |
return mean, cov | |
def save(self, pkl_file): | |
with open(pkl_file, 'wb') as f: | |
pickle.dump(self.__dict__, f) | |
def load(pkl_file): | |
with open(pkl_file, 'rb') as f: | |
s = dnnlib.EasyDict(pickle.load(f)) | |
obj = FeatureStats(capture_all=s.capture_all, max_items=s.max_items) | |
obj.__dict__.update(s) | |
return obj | |
#---------------------------------------------------------------------------- | |
class ProgressMonitor: | |
def __init__(self, tag=None, num_items=None, flush_interval=1000, verbose=False, progress_fn=None, pfn_lo=0, pfn_hi=1000, pfn_total=1000): | |
self.tag = tag | |
self.num_items = num_items | |
self.verbose = verbose | |
self.flush_interval = flush_interval | |
self.progress_fn = progress_fn | |
self.pfn_lo = pfn_lo | |
self.pfn_hi = pfn_hi | |
self.pfn_total = pfn_total | |
self.start_time = time.time() | |
self.batch_time = self.start_time | |
self.batch_items = 0 | |
if self.progress_fn is not None: | |
self.progress_fn(self.pfn_lo, self.pfn_total) | |
def update(self, cur_items): | |
assert (self.num_items is None) or (cur_items <= self.num_items) | |
if (cur_items < self.batch_items + self.flush_interval) and (self.num_items is None or cur_items < self.num_items): | |
return | |
cur_time = time.time() | |
total_time = cur_time - self.start_time | |
time_per_item = (cur_time - self.batch_time) / max(cur_items - self.batch_items, 1) | |
if (self.verbose) and (self.tag is not None): | |
print(f'{self.tag:<19s} items {cur_items:<7d} time {dnnlib.util.format_time(total_time):<12s} ms/item {time_per_item*1e3:.2f}') | |
self.batch_time = cur_time | |
self.batch_items = cur_items | |
if (self.progress_fn is not None) and (self.num_items is not None): | |
self.progress_fn(self.pfn_lo + (self.pfn_hi - self.pfn_lo) * (cur_items / self.num_items), self.pfn_total) | |
def sub(self, tag=None, num_items=None, flush_interval=1000, rel_lo=0, rel_hi=1): | |
return ProgressMonitor( | |
tag = tag, | |
num_items = num_items, | |
flush_interval = flush_interval, | |
verbose = self.verbose, | |
progress_fn = self.progress_fn, | |
pfn_lo = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_lo, | |
pfn_hi = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_hi, | |
pfn_total = self.pfn_total, | |
) | |
#---------------------------------------------------------------------------- | |
def compute_feature_stats_for_dataset(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, data_loader_kwargs=None, max_items=None, **stats_kwargs): | |
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) | |
if data_loader_kwargs is None: | |
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2) | |
# Try to lookup from cache. | |
cache_file = None | |
if opts.cache: | |
# Choose cache file name. | |
args = dict(dataset_kwargs=opts.dataset_kwargs, detector_url=detector_url, detector_kwargs=detector_kwargs, stats_kwargs=stats_kwargs) | |
md5 = hashlib.md5(repr(sorted(args.items())).encode('utf-8')) | |
cache_tag = f'{dataset.name}-{get_feature_detector_name(detector_url)}-{md5.hexdigest()}' | |
cache_file = dnnlib.make_cache_dir_path('gan-metrics', cache_tag + '.pkl') | |
# Check if the file exists (all processes must agree). | |
flag = os.path.isfile(cache_file) if opts.rank == 0 else False | |
if opts.num_gpus > 1: | |
flag = torch.as_tensor(flag, dtype=torch.float32, device=opts.device) | |
torch.distributed.broadcast(tensor=flag, src=0) | |
flag = (float(flag.cpu()) != 0) | |
# Load. | |
if flag: | |
return FeatureStats.load(cache_file) | |
# Initialize. | |
num_items = len(dataset) | |
if max_items is not None: | |
num_items = min(num_items, max_items) | |
stats = FeatureStats(max_items=num_items, **stats_kwargs) | |
progress = opts.progress.sub(tag='dataset features', num_items=num_items, rel_lo=rel_lo, rel_hi=rel_hi) | |
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose) | |
# Main loop. | |
item_subset = [(i * opts.num_gpus + opts.rank) % num_items for i in range((num_items - 1) // opts.num_gpus + 1)] | |
# for images, _labels in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, batch_size=batch_size, **data_loader_kwargs): | |
# adaptation to inpainting | |
for images, masks, _labels in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, batch_size=batch_size, | |
**data_loader_kwargs): | |
# -------------------------------- | |
if images.shape[1] == 1: | |
images = images.repeat([1, 3, 1, 1]) | |
features = detector(images.to(opts.device), **detector_kwargs) | |
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank) | |
progress.update(stats.num_items) | |
# Save to cache. | |
if cache_file is not None and opts.rank == 0: | |
os.makedirs(os.path.dirname(cache_file), exist_ok=True) | |
temp_file = cache_file + '.' + uuid.uuid4().hex | |
stats.save(temp_file) | |
os.replace(temp_file, cache_file) # atomic | |
return stats | |
#---------------------------------------------------------------------------- | |
def compute_feature_stats_for_generator(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, jit=False, data_loader_kwargs=None, **stats_kwargs): | |
if data_loader_kwargs is None: | |
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2) | |
if batch_gen is None: | |
batch_gen = min(batch_size, 4) | |
assert batch_size % batch_gen == 0 | |
# Setup generator and load labels. | |
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device) | |
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) | |
# Image generation func. | |
def run_generator(img_in, mask_in, z, c): | |
img = G(img_in, mask_in, z, c, **opts.G_kwargs) | |
# img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
img = ((img + 1.0) * 127.5).clamp(0, 255).round().to(torch.uint8) | |
return img | |
# # JIT. | |
# if jit: | |
# z = torch.zeros([batch_gen, G.z_dim], device=opts.device) | |
# c = torch.zeros([batch_gen, G.c_dim], device=opts.device) | |
# run_generator = torch.jit.trace(run_generator, [z, c], check_trace=False) | |
# Initialize. | |
stats = FeatureStats(**stats_kwargs) | |
assert stats.max_items is not None | |
progress = opts.progress.sub(tag='generator features', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi) | |
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose) | |
# Main loop. | |
item_subset = [(i * opts.num_gpus + opts.rank) % stats.max_items for i in range((stats.max_items - 1) // opts.num_gpus + 1)] | |
for imgs_batch, masks_batch, labels_batch in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, | |
batch_size=batch_size, | |
**data_loader_kwargs): | |
images = [] | |
imgs_gen = (imgs_batch.to(opts.device).to(torch.float32) / 127.5 - 1).split(batch_gen) | |
masks_gen = masks_batch.to(opts.device).to(torch.float32).split(batch_gen) | |
for img_in, mask_in in zip(imgs_gen, masks_gen): | |
z = torch.randn([img_in.shape[0], G.z_dim], device=opts.device) | |
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(img_in.shape[0])] | |
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device) | |
images.append(run_generator(img_in, mask_in, z, c)) | |
images = torch.cat(images) | |
if images.shape[1] == 1: | |
images = images.repeat([1, 3, 1, 1]) | |
features = detector(images, **detector_kwargs) | |
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank) | |
progress.update(stats.num_items) | |
return stats | |
#---------------------------------------------------------------------------- | |
def compute_image_stats_for_generator(opts, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, jit=False, data_loader_kwargs=None, **stats_kwargs): | |
if data_loader_kwargs is None: | |
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2) | |
if batch_gen is None: | |
batch_gen = min(batch_size, 4) | |
assert batch_size % batch_gen == 0 | |
# Setup generator and load labels. | |
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device) | |
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) | |
# Image generation func. | |
def run_generator(img_in, mask_in, z, c): | |
img = G(img_in, mask_in, z, c, **opts.G_kwargs) | |
# img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
img = ((img + 1.0) * 127.5).clamp(0, 255).round().to(torch.uint8) | |
return img | |
# Initialize. | |
stats = FeatureStats(**stats_kwargs) | |
assert stats.max_items is not None | |
progress = opts.progress.sub(tag='generator images', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi) | |
# Main loop. | |
item_subset = [(i * opts.num_gpus + opts.rank) % stats.max_items for i in range((stats.max_items - 1) // opts.num_gpus + 1)] | |
for imgs_batch, masks_batch, labels_batch in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, | |
batch_size=batch_size, | |
**data_loader_kwargs): | |
images = [] | |
imgs_gen = (imgs_batch.to(opts.device).to(torch.float32) / 127.5 - 1).split(batch_gen) | |
masks_gen = masks_batch.to(opts.device).to(torch.float32).split(batch_gen) | |
for img_in, mask_in in zip(imgs_gen, masks_gen): | |
z = torch.randn([img_in.shape[0], G.z_dim], device=opts.device) | |
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(img_in.shape[0])] | |
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device) | |
images.append(run_generator(img_in, mask_in, z, c)) | |
images = torch.cat(images) | |
if images.shape[1] == 1: | |
images = images.repeat([1, 3, 1, 1]) | |
assert imgs_batch.shape == images.shape | |
metrics = [] | |
for i in range(imgs_batch.shape[0]): | |
img_real = np.transpose(imgs_batch[i].cpu().numpy(), [1, 2, 0]) | |
img_gen = np.transpose(images[i].cpu().numpy(), [1, 2, 0]) | |
psnr = calculate_psnr(img_gen, img_real) | |
ssim = calculate_ssim(img_gen, img_real) | |
l1 = calculate_l1(img_gen, img_real) | |
metrics.append([psnr, ssim, l1]) | |
metrics = torch.from_numpy(np.array(metrics)).to(torch.float32).to(opts.device) | |
stats.append_torch(metrics, num_gpus=opts.num_gpus, rank=opts.rank) | |
progress.update(stats.num_items) | |
return stats | |
def calculate_psnr(img1, img2): | |
# img1 and img2 have range [0, 255] | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
mse = np.mean((img1 - img2) ** 2) | |
if mse == 0: | |
return float('inf') | |
return 20 * math.log10(255.0 / math.sqrt(mse)) | |
def calculate_ssim(img1, img2): | |
C1 = (0.01 * 255) ** 2 | |
C2 = (0.03 * 255) ** 2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1 ** 2 | |
mu2_sq = mu2 ** 2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def calculate_l1(img1, img2): | |
img1 = img1.astype(np.float64) / 255.0 | |
img2 = img2.astype(np.float64) / 255.0 | |
l1 = np.mean(np.abs(img1 - img2)) | |
return l1 | |
# def compute_feature_stats_for_generator(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, jit=False, **stats_kwargs): | |
# if batch_gen is None: | |
# batch_gen = min(batch_size, 4) | |
# assert batch_size % batch_gen == 0 | |
# | |
# # Setup generator and load labels. | |
# G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device) | |
# dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) | |
# | |
# # Image generation func. | |
# def run_generator(z, c): | |
# img = G(z=z, c=c, **opts.G_kwargs) | |
# img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
# return img | |
# | |
# # JIT. | |
# if jit: | |
# z = torch.zeros([batch_gen, G.z_dim], device=opts.device) | |
# c = torch.zeros([batch_gen, G.c_dim], device=opts.device) | |
# run_generator = torch.jit.trace(run_generator, [z, c], check_trace=False) | |
# | |
# # Initialize. | |
# stats = FeatureStats(**stats_kwargs) | |
# assert stats.max_items is not None | |
# progress = opts.progress.sub(tag='generator features', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi) | |
# detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose) | |
# | |
# # Main loop. | |
# while not stats.is_full(): | |
# images = [] | |
# for _i in range(batch_size // batch_gen): | |
# z = torch.randn([batch_gen, G.z_dim], device=opts.device) | |
# c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_gen)] | |
# c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device) | |
# images.append(run_generator(z, c)) | |
# images = torch.cat(images) | |
# if images.shape[1] == 1: | |
# images = images.repeat([1, 3, 1, 1]) | |
# features = detector(images, **detector_kwargs) | |
# stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank) | |
# progress.update(stats.num_items) | |
# return stats | |
# | |
# #---------------------------------------------------------------------------- | |