Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import requests | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
import numpy as np | |
import tempfile | |
import os | |
# 設置頁面配置 | |
st.set_page_config( | |
page_title="碳排放數據可視化分析", | |
page_icon="🌱", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# 標題和介紹 | |
st.title("🌱 碳排放數據可視化分析") | |
st.markdown("---") | |
st.write("此應用程式分析台灣公司的碳排放數據,包括範疇一和範疇二的排放量。") | |
# 側邊欄設置 | |
st.sidebar.header("⚙️ 設置選項") | |
# 數據載入功能 | |
def load_data(): | |
"""載入並處理碳排放數據""" | |
try: | |
# 顯示載入狀態 | |
with st.spinner("正在載入數據..."): | |
url = "https://mopsfin.twse.com.tw/opendata/t187ap46_O_1.csv" | |
response = requests.get(url) | |
# 使用臨時文件 | |
with tempfile.NamedTemporaryFile(mode='wb', suffix='.csv', delete=False) as tmp_file: | |
tmp_file.write(response.content) | |
tmp_file_path = tmp_file.name | |
# 讀取CSV文件 | |
df = pd.read_csv(tmp_file_path, encoding="utf-8-sig") | |
# 清理臨時文件 | |
os.unlink(tmp_file_path) | |
# 數據清理 | |
original_shape = df.shape | |
df = df.dropna() | |
# 尋找正確的欄位名稱 | |
company_cols = [col for col in df.columns if "公司" in col or "代號" in col or "股票" in col] | |
emission_cols = [col for col in df.columns if "排放" in col] | |
# 自動識別欄位 | |
company_col = "公司代號" | |
scope1_col = "範疇一排放量(公噸CO2e)" | |
scope2_col = "範疇二排放量(公噸CO2e)" | |
if company_col not in df.columns and company_cols: | |
company_col = company_cols[0] | |
if scope1_col not in df.columns: | |
scope1_candidates = [col for col in emission_cols if "範疇一" in col or "Scope1" in col] | |
if scope1_candidates: | |
scope1_col = scope1_candidates[0] | |
if scope2_col not in df.columns: | |
scope2_candidates = [col for col in emission_cols if "範疇二" in col or "Scope2" in col] | |
if scope2_candidates: | |
scope2_col = scope2_candidates[0] | |
# 轉換數值格式 | |
if scope1_col in df.columns: | |
df[scope1_col] = pd.to_numeric(df[scope1_col], errors='coerce') | |
if scope2_col in df.columns: | |
df[scope2_col] = pd.to_numeric(df[scope2_col], errors='coerce') | |
# 移除轉換後的空值 | |
available_cols = [col for col in [scope1_col, scope2_col, company_col] if col in df.columns] | |
df = df.dropna(subset=available_cols) | |
return df, original_shape, company_col, scope1_col, scope2_col, company_cols, emission_cols | |
except Exception as e: | |
st.error(f"載入數據時發生錯誤: {str(e)}") | |
return None, None, None, None, None, None, None | |
# 載入數據 | |
data_result = load_data() | |
if data_result[0] is not None: | |
df, original_shape, company_col, scope1_col, scope2_col, company_cols, emission_cols = data_result | |
# 顯示數據基本信息 | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric("原始數據筆數", original_shape[0]) | |
with col2: | |
st.metric("處理後數據筆數", df.shape[0]) | |
with col3: | |
st.metric("總欄位數", df.shape[1]) | |
# 側邊欄控制項 | |
st.sidebar.subheader("📊 圖表選項") | |
# 圖表類型選擇 | |
chart_types = st.sidebar.multiselect( | |
"選擇要顯示的圖表:", | |
["旭日圖", "雙層圓餅圖", "散點圖", "綜合旭日圖"], | |
default=["旭日圖", "雙層圓餅圖"] | |
) | |
# 公司數量選擇 | |
max_companies = min(30, len(df)) | |
num_companies = st.sidebar.slider( | |
"顯示公司數量:", | |
min_value=5, | |
max_value=max_companies, | |
value=min(15, max_companies), | |
step=5 | |
) | |
# 顯示數據統計 | |
if st.sidebar.checkbox("顯示數據統計", value=True): | |
st.subheader("📈 數據統計摘要") | |
if all(col in df.columns for col in [scope1_col, scope2_col]): | |
col1, col2 = st.columns(2) | |
with col1: | |
st.write("**範疇一排放量統計:**") | |
scope1_stats = df[scope1_col].describe() | |
st.write(f"- 平均值: {scope1_stats['mean']:.2f} 公噸CO2e") | |
st.write(f"- 中位數: {scope1_stats['50%']:.2f} 公噸CO2e") | |
st.write(f"- 最大值: {scope1_stats['max']:.2f} 公噸CO2e") | |
st.write(f"- 最小值: {scope1_stats['min']:.2f} 公噸CO2e") | |
with col2: | |
st.write("**範疇二排放量統計:**") | |
scope2_stats = df[scope2_col].describe() | |
st.write(f"- 平均值: {scope2_stats['mean']:.2f} 公噸CO2e") | |
st.write(f"- 中位數: {scope2_stats['50%']:.2f} 公噸CO2e") | |
st.write(f"- 最大值: {scope2_stats['max']:.2f} 公噸CO2e") | |
st.write(f"- 最小值: {scope2_stats['min']:.2f} 公噸CO2e") | |
# 圖表生成函數 | |
def create_sunburst_chart(df, num_companies): | |
"""創建旭日圖""" | |
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): | |
df_top = df.nlargest(num_companies, scope1_col) | |
sunburst_data = [] | |
for _, row in df_top.iterrows(): | |
company = str(row[company_col]) | |
scope1 = row[scope1_col] | |
scope2 = row[scope2_col] | |
sunburst_data.extend([ | |
dict(ids=f"公司-{company}", labels=f"公司 {company}", parents="", values=scope1 + scope2), | |
dict(ids=f"範疇一-{company}", labels=f"範疇一: {scope1:.0f}", parents=f"公司-{company}", values=scope1), | |
dict(ids=f"範疇二-{company}", labels=f"範疇二: {scope2:.0f}", parents=f"公司-{company}", values=scope2) | |
]) | |
fig_sunburst = go.Figure(go.Sunburst( | |
ids=[d['ids'] for d in sunburst_data], | |
labels=[d['labels'] for d in sunburst_data], | |
parents=[d['parents'] for d in sunburst_data], | |
values=[d['values'] for d in sunburst_data], | |
branchvalues="total", | |
hovertemplate='<b>%{label}</b><br>排放量: %{value:.0f} 公噸CO2e<extra></extra>', | |
maxdepth=3 | |
)) | |
fig_sunburst.update_layout( | |
title=f"碳排放量旭日圖 (前{num_companies}家公司)", | |
font_size=12, | |
height=600 | |
) | |
return fig_sunburst | |
return None | |
def create_nested_pie_chart(df, num_companies): | |
"""創建雙層圓餅圖""" | |
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): | |
df_top = df.nlargest(num_companies, scope1_col) | |
fig = make_subplots( | |
rows=1, cols=2, | |
specs=[[{"type": "pie"}, {"type": "pie"}]], | |
subplot_titles=("範疇一排放量", "範疇二排放量") | |
) | |
fig.add_trace(go.Pie( | |
labels=df_top[company_col], | |
values=df_top[scope1_col], | |
name="範疇一", | |
hovertemplate='<b>%{label}</b><br>範疇一排放量: %{value:.0f} 公噸CO2e<br>佔比: %{percent}<extra></extra>', | |
textinfo='label+percent', | |
textposition='auto' | |
), row=1, col=1) | |
fig.add_trace(go.Pie( | |
labels=df_top[company_col], | |
values=df_top[scope2_col], | |
name="範疇二", | |
hovertemplate='<b>%{label}</b><br>範疇二排放量: %{value:.0f} 公噸CO2e<br>佔比: %{percent}<extra></extra>', | |
textinfo='label+percent', | |
textposition='auto' | |
), row=1, col=2) | |
fig.update_layout( | |
title_text=f"碳排放量圓餅圖比較 (前{num_companies}家公司)", | |
showlegend=True, | |
height=600 | |
) | |
return fig | |
return None | |
def create_scatter_plot(df): | |
"""創建散點圖""" | |
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): | |
fig_scatter = px.scatter( | |
df, | |
x=scope1_col, | |
y=scope2_col, | |
hover_data=[company_col], | |
title="範疇一 vs 範疇二排放量散點圖", | |
labels={ | |
scope1_col: "範疇一排放量 (公噸CO2e)", | |
scope2_col: "範疇二排放量 (公噸CO2e)" | |
}, | |
hover_name=company_col | |
) | |
fig_scatter.update_layout(height=600) | |
return fig_scatter | |
return None | |
def create_comprehensive_sunburst(df, num_companies): | |
"""創建綜合旭日圖""" | |
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): | |
df_copy = df.copy() | |
df_copy['total_emission'] = df_copy[scope1_col] + df_copy[scope2_col] | |
df_copy['emission_level'] = pd.cut(df_copy['total_emission'], | |
bins=[0, 1000, 5000, 20000, float('inf')], | |
labels=['低排放(<1K)', '中排放(1K-5K)', '高排放(5K-20K)', '超高排放(>20K)']) | |
sunburst_data = [] | |
companies_per_level = max(1, num_companies // 4) | |
for level in df_copy['emission_level'].unique(): | |
if pd.isna(level): | |
continue | |
level_companies = df_copy[df_copy['emission_level'] == level].nlargest(companies_per_level, 'total_emission') | |
for _, row in level_companies.iterrows(): | |
company = str(row[company_col]) | |
scope1 = row[scope1_col] | |
scope2 = row[scope2_col] | |
total = scope1 + scope2 | |
sunburst_data.extend([ | |
dict(ids=str(level), labels=str(level), parents="", values=total), | |
dict(ids=f"{level}-{company}", labels=f"{company}", parents=str(level), values=total), | |
dict(ids=f"{level}-{company}-範疇一", labels=f"範疇一({scope1:.0f})", | |
parents=f"{level}-{company}", values=scope1), | |
dict(ids=f"{level}-{company}-範疇二", labels=f"範疇二({scope2:.0f})", | |
parents=f"{level}-{company}", values=scope2) | |
]) | |
fig_comprehensive = go.Figure(go.Sunburst( | |
ids=[d['ids'] for d in sunburst_data], | |
labels=[d['labels'] for d in sunburst_data], | |
parents=[d['parents'] for d in sunburst_data], | |
values=[d['values'] for d in sunburst_data], | |
branchvalues="total", | |
hovertemplate='<b>%{label}</b><br>排放量: %{value:.0f} 公噸CO2e<extra></extra>', | |
maxdepth=4 | |
)) | |
fig_comprehensive.update_layout( | |
title="分級碳排放量旭日圖", | |
font_size=10, | |
height=700 | |
) | |
return fig_comprehensive | |
return None | |
# 顯示選中的圖表 | |
st.subheader("📊 互動式圖表") | |
if "旭日圖" in chart_types: | |
st.write("### 🌞 旭日圖") | |
fig1 = create_sunburst_chart(df, num_companies) | |
if fig1: | |
st.plotly_chart(fig1, use_container_width=True) | |
else: | |
st.error("無法創建旭日圖,缺少必要欄位") | |
if "雙層圓餅圖" in chart_types: | |
st.write("### 🥧 雙層圓餅圖") | |
fig2 = create_nested_pie_chart(df, num_companies) | |
if fig2: | |
st.plotly_chart(fig2, use_container_width=True) | |
else: | |
st.error("無法創建圓餅圖,缺少必要欄位") | |
if "散點圖" in chart_types: | |
st.write("### 📈 散點圖") | |
fig3 = create_scatter_plot(df) | |
if fig3: | |
st.plotly_chart(fig3, use_container_width=True) | |
else: | |
st.error("無法創建散點圖,缺少必要欄位") | |
if "綜合旭日圖" in chart_types: | |
st.write("### 🌟 綜合旭日圖") | |
fig4 = create_comprehensive_sunburst(df, num_companies) | |
if fig4: | |
st.plotly_chart(fig4, use_container_width=True) | |
else: | |
st.error("無法創建綜合旭日圖,缺少必要欄位") | |
# 顯示原始數據 | |
if st.sidebar.checkbox("顯示原始數據"): | |
st.subheader("📋 原始數據預覽") | |
st.dataframe(df.head(100), use_container_width=True) | |
# 數據下載功能 | |
if st.sidebar.button("下載處理後數據"): | |
csv = df.to_csv(index=False, encoding='utf-8-sig') | |
st.sidebar.download_button( | |
label="💾 下載 CSV 文件", | |
data=csv, | |
file_name="carbon_emission_data.csv", | |
mime="text/csv" | |
) | |
# 偵錯信息 | |
if st.sidebar.checkbox("顯示偵錯信息"): | |
st.subheader("🔧 偵錯信息") | |
st.write("**識別的欄位:**") | |
st.write(f"- 公司欄位: {company_col}") | |
st.write(f"- 範疇一欄位: {scope1_col}") | |
st.write(f"- 範疇二欄位: {scope2_col}") | |
st.write("**所有可用欄位:**") | |
st.write(df.columns.tolist()) | |
else: | |
st.error("無法載入數據,請檢查網路連接或數據源。") | |
# 頁面底部信息 | |
st.markdown("---") | |
st.markdown( | |
""" | |
**數據來源:** 台灣證券交易所公開資訊觀測站 | |
**更新時間:** 根據數據源自動更新 | |
**製作:** Streamlit 碳排放數據分析應用 | |
""" | |
) |